Skip to main content

Phytochemical Removal of Heavy Metal-Contaminated Soils

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

Soil contamination with heavy metals and metalloids has become a serious issue in terms of potential hazards to the macro- and microorganisms. Most investigations were focused on how to clean the agricultural lands from such contamination. Generally, there are two methods or strategies for this purpose: phyto- and chemo-remediation. Phyto-remediation is the method where plants are used to sequester, remove, or accumulate heavy metals released into the environment, while chemo-remediation is remediating the soil by chemical means, using chemicals such as acids, chelators, and others to immobilize heavy metals. Recently, specific attention was paid to phyto-remediation, since it is not costly, and the biomass produced from cultivation of contaminated lands can be used for bioenergy purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biote chnol 3:71–90

    Google Scholar 

  • Anderson WC (ed) (1993) Soil washing flushing. American Academy of Environmental Engineers, Annaplois, MD

    Google Scholar 

  • Badr N, Fawzy M, Al-Qahtani KM (2012) Phytoremediation: an economical solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Appl Sci J 16:1292–1301

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants. Evolutionary aspects. CRC press, Boca Raton, FL, pp 155–176

    Google Scholar 

  • Baker AJM, Reevs RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi Caerulescens J&C presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals using plants to clean up the environment. John Wiley & Sons Inc, New York

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bodar CW, Pronk ME, Sijm DT (2006) The European Union risk assessment on zinc and zinc compounds: the process and the facts. Integr Environ Assess Manag 1:301–319

    Article  Google Scholar 

  • Bolan NS, Duraisamy VP (2003) Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals: a review involving specific case studies. Aust J Soil Res 41:533–555

    Article  CAS  Google Scholar 

  • Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 81:294–300

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brown GA, Elliot HA (1992) Influence of electrolytes on EDTA extraction of Pb from polluted soil. Water Air Soil Pollut 62:157–165

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  PubMed  Google Scholar 

  • Cluis C (2004) Junk-greedy Greens: phytoremediation as a new option for soil decontamination. BioTech J 2:61–67

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated site. J Environ Qual 26:1424–1430

    Article  CAS  Google Scholar 

  • Elliot HA, Brown GA (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut 45:361–369

    Google Scholar 

  • Elliot HA, Shastri NL (1999) Extractive decontamination of metal polluted soils using oxalate. Water Air Soil Pollut 110:335–346

    Article  Google Scholar 

  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A (2007a) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 68:345–353

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007b) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Finzgar N, Lestan D (2007) Multi-step leaching of Pb and Zn contaminated soils with EDTA. Chemosphere 66:824–832

    Article  CAS  PubMed  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current view on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Fotakis G, Timbrell JA (2006) Role of trace elements in cadmium chloride uptake in hepatoma cell lines. Toxicol Lett 164:97–103

    Article  CAS  PubMed  Google Scholar 

  • Gabbrielli R, Pandolfini T, Verganano O, Palandri MR (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122:271–277

    Article  CAS  Google Scholar 

  • Heil DM, Samani Z, Hanson AT, Rudd B (1999) Remediation of lead contaminated soil by EDTA. I-Batch and column studies. Water Air Soil Pollut 113:77–95

    Article  CAS  Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD (1991) Comparative studies of nickel, cobalt and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138:195–205

    Article  CAS  Google Scholar 

  • Hong APK, Li C, Banerji SK, Regmi T (1999) Extraction, recovery, and biostability of EDTA for Remediation of heavy metal-contaminated soil. J Soil Contam 8:81–103

    Article  CAS  Google Scholar 

  • Huang JA, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huang JW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetics chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Jaffré T (1980) Etude Écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. vol 124, Travaux et Documents de ľ ORSTOM, (Paris)

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from new caledonia. Science 193:579–580

    Article  PubMed  Google Scholar 

  • Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:1906–1912

    Article  CAS  PubMed  Google Scholar 

  • Kayser A, Schulin R, Felix H (1999) Field trials for the phytoremediation of soils polluted with heavy metals. In: Umweltbundesamt (Ed.), Proc. Int. Workshop am Fraunhofer Institut fur Umweltchemic und Okotoxikologie,Schmallenberg, Germany, 1–2 Dec. 1997. Erich Schmidt Verlag, Berlin, pp. 170–182.

    Google Scholar 

  • Khalil MEA (1995) Studies on some heavy metals in soil and plant. Ph.D. Thesis, Fac. of Agric., Moshtohor, Zagazig Uinv., Egypt

    Google Scholar 

  • KÅ‚os A, Czora M, Rajfur M, WacÅ‚awek M (2012) Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water Air Soil Pollut 223:1829–1836

    Article  PubMed Central  PubMed  Google Scholar 

  • Köhl KI, Smith JAC, Baker AJM (1997) Defining a metal-hyperaccumulator plant: The relationship between metal uptake, allocation and tolerance. Abstract Plant Physiol 114:124

    Google Scholar 

  • Krämer U, Cotter-howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Kumar P, Dushenkov V, Motto H, Raskin I (1995b) Phytoextraction: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM, Baker AJM, Kochion LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non accumulator species of Thlapi. Plant Physiol 112:1715–1722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lestan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ Pollut 153:3–13

    Article  CAS  PubMed  Google Scholar 

  • Lioyd-Thomas DH (1995) Heavy metal accumulation by Thlaspi Caerulescens. J. & C. PressI. Ph.D. Thesis, Univ. Sheffield, UK

    Google Scholar 

  • Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  PubMed  Google Scholar 

  • Luo CL, Shen ZG, Li XD, Baker AJM (2006) The role of root damage in the EDTA-enhanced accumulation of lead by Indian mustard plants. Int J Phytoremediation 8:323–337

    Article  CAS  PubMed  Google Scholar 

  • Malaisse F, Gregoire J, Brooks RR, Morrison RS, Reeves RD (1978) Aeolanthus Bioformifolius De wild: a hyperaccumulator of copper from ZaÑ—re. Science 199:887–888

    Article  CAS  PubMed  Google Scholar 

  • Mathis P, Kayser A (2001) Plant uptake of heavy metals following glyphosate treatment. In: International Society for Trace Element Biogeochemistry (ed.) Proceedings of the Sixth International Conference on the Geochemistry of Trace Elements (ICOBTE), Guelph, ON, Canada, 29 July—2 August 2001, p. 484

    Google Scholar 

  • McCarthy P (2001) The principles of humic substances. Soil Sci 166:738–751

    Article  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 261–287

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soil. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  • Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilisation and plant availability – the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113

    Article  CAS  Google Scholar 

  • Norvell WA (1991) Reaction of metal chelates in soils and nutrient solution. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrient in agriculture, 2nd edn. Soil Science Society of America, Wiscosin, Madison, pp 87–227

    Google Scholar 

  • Nowack B. (2002) Environmental chemistry of aminopolycarboxylate chelating agents. Environ Sci Technol 36:4009–4016

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Papassiopi N, Tambouris S, Kontopoulos A (1999) Removal of heavy metals from calcareous contaminated soil by EDTA leaching. Water Air Soil Pollut 109:1–15

    Article  CAS  Google Scholar 

  • Peterson PJ (1971) Unusual accumulation of elements by plants and animals. Sci Prog Oxford 59:505–526

    CAS  Google Scholar 

  • Pichtel J, Pichtel TM (1997) Comparison of solvents for ex situ removal of chromium and lead from contaminated soil. Environ Eng Sci 14:97–104

    Article  CAS  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700

    Article  CAS  Google Scholar 

  • Rabie MH (1984) Studies on some heavy metals in soils of A.R.E. PhD Thesis, Fac. of Agric. Ain Shams Univ., Egypt

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD (1992) Hyperaccumulation of nickel by serpentine plants. In: Proctor J, Baker AJM, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover, pp 253–277

    Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, NATO science series: IV: earth and environmental sciences. Springer, New York, pp 1–25

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Phytoremediation of toxic metals using plants to clean up the environment. Raskin I, Ensley B.D. (eds.) John Wiley & Sons Inc, New York

    Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from a mining area in central Europe. Environ Pollut 31:277–287

    Article  CAS  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson J-P, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Seleiman MF, Santanen A, Stoddard FL, Mäkelä PSA (2012) Feedstock quality and growth of bioenergy crops fertilized with sewage sludge. Chemosphere 89:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Seleiman MF, Santanen A, Jaakkola S, Ekholm P, Hartikainen H, Stoddard FL, Mäkelä PSA (2013) Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenergy 59:477–485

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2000) Plant screening for Chromium phytoremediation. Int J Phytoremediation 2:34–54

    Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Soltanpour PN (1991) Determination of nutrient availability element toxicity by ABDTPA. Soil Test and ICPS. Adv Soil Sci 16:165–190

    CAS  Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944

    Article  CAS  PubMed  Google Scholar 

  • Uren NC, Reisenauer HM (1988) The role of root exudates in nutrient acquisition. Adv Plant Nutrition 3:79–114

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Zhuang P, Yang Q, Wang H, Shu W (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud F. Seleiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdel-Salam, A.A., Salem, H.M., Abdel-Salam, M.A., Seleiman, M.F. (2015). Phytochemical Removal of Heavy Metal-Contaminated Soils. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_16

Download citation

Publish with us

Policies and ethics