Skip to main content

Role of Earthworms on Phytoremediation of Heavy Metal-Polluted Soils

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

Heavy metal contamination of soil is a major concern in all parts of the world, in particular in emerging countries where there is an increasing need for soil for food. The accumulation of heavy metals in the environment can affect the health of humans and animals. This has led to the recent development of techniques for cleaning up polluted soils and sites. One such technique is phytoremediation, which exploits the ability of certain plants to accumulate large amounts of heavy metals. Phytoremediation has many advantages: (1) it is a method available for in situ extraction of heavy metals from soils, (2) it is economically viable, and (3) it has a low environmental impact. However, phytoremediation has limitations: (1) the slow growth and low biomass require a considerable investment in time and/or money, and (2) the heavy metals accumulate slowly in the plants as the pools of heavy metals available to the plants at a given time are small. To improve the performance of phytoextraction, hyperaccumulating plants with high biomass are used. Recent research has concentrated on the role of the rhizosphere, but few studies have considered the drilosphere compartment, the part of the soil influenced by earthworm secretions and castings. However, earthworms as ecological engineers play an important role in their environment. The positive effects of earthworms on plant production have been extensively documented as well as their effects on heavy metal solubility and availability. The interactions between heavy metals and earthworms depend on the earthworm species, the metal, and the physical and chemical properties of the soil. Earthworms have an effect on metal speciation in soils, changing the bioaccessibility and bioavailability of the metals for other organisms, such as plants.

This chapter summarizes current understanding of the interactions between earthworms, plants, and microorganisms in heavy metal-contaminated soil. It covers basic research as well as practical phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Rida AMM (1996) Concentrations et croissance de lombriciens et de plantes dans des sols contaminés ou non par Cd, Cu, Fe, Pb et Zn: interactions plante-sol-lombricien. Soil Biol Biochem 28:1037–1044

    CAS  Google Scholar 

  • Aghababaei F, Raiesi F, Hosseinpur A (2014a) The combined effects of earthworms and arbuscular mycorrhizal fungi on microbial biomass and enzyme activities in a calcareous soil spiked with cadmium. Appl Soil Ecol 75:33–42

    Google Scholar 

  • Aghababaei F, Raiesi F, Hosseinpur A (2014b) The influence of earthworm and mycorrhizal co-inoculation on Cd speciation in a contaminated soil. Soil Biol Biochem 78:21–29

    CAS  Google Scholar 

  • Aira M et al (2002) How earthworm density affects microbial biomass and activity in pig manure. Eur J Soil Biol 38:7–10

    Google Scholar 

  • Aira M, Monroy F, Domínguez J (2007) Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci Total Environ 385(1–3):252–261

    CAS  PubMed  Google Scholar 

  • Aira M et al (2008) Microbial communities of Lumbricus terrestris L. middens: structure, activity, and changes through time in relation to earthworm presence. J Soils Sediments 9(1):54–61

    Google Scholar 

  • Aira M et al (2010) Ageing effects of casts of Aporrectodea caliginosa on soil microbial community structure and activity. Appl Soil Ecol 46:143–146

    Google Scholar 

  • Alkorta I et al (2003) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18:65–73

    PubMed  Google Scholar 

  • Bar-Ness E et al (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100:451–456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barois I et al (1987) Influence of the tropical earthworm Pontoscolex corethrurus (Glossoscolecidae) on the fixation and mineralization of nitrogen. In: Bonvicini AM, Omodeo P (eds) On earthworms. Mucchi, Bologna, pp 151–158

    Google Scholar 

  • Bengtsson G, Ek H, Rundgren S (1992) Evolutionary response of earthworms to long-term metal exposure. Oikos 63:289–297

    Google Scholar 

  • Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover, vol 38. Academic, San Diego, p. 421

    Google Scholar 

  • Beyer WN, Chaney RL, Mulhern BM (1982) Heavy metal concentrations in earthworms from soil amended with sewage sludge. J Environ Qual 11:381–385

    CAS  Google Scholar 

  • Binet F, Curmi P (1992) Structural effects of Lumbricus terrestris (oligochaeta: lumbricidae) on the soil-organic matter system: micromorphological observations and autoradiographs. Soil Biol Biochem 24:1519–1523

    Google Scholar 

  • Binet F, Le Bayon RC (1998) Space-time dynamics in situ of earthworm casts under temperate cultivated soils. Soil Biol Biochem 31:85–93

    Google Scholar 

  • Blouin M, Barot S, Lavelle P (2006) Earthworms (Millsonia anomala, Megascolecidae) do not increase rice growth through enhanced nitrogen mineralization. Soil Biol Biochem 38:2063–2068

    CAS  Google Scholar 

  • Blouin M, Lavelle P, Laffray D (2007) Drought stress in rice (Oryza sativa L.) is enhanced in the presence of the compacting earthworm Millsonia anomala. Env Exp Bot 60:352–359

    CAS  Google Scholar 

  • Blouin M et al (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64:161–182

    Google Scholar 

  • Bohlen PJ et al (2002) Indirect effects of earthworms on microbial assimilation of labile carbon. Appl Soil Ecol 20:255–261

    Google Scholar 

  • Bouche M (1977) Strategies lombriciennes. Ecol Bull 25:122–132

    Google Scholar 

  • Bouché MB, Al-Addan F (1997) Earthworms, water infiltration and soil stability: some new assessments. Soil Biol Biochem 29:441–452

    Google Scholar 

  • Braud A et al (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286, Available at: http://dx.doi.org/10.1016/j.chemosphere.2008.09.013

    PubMed  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant and Soil 170:209–231

    CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Google Scholar 

  • Castellanos Suarez DE et al (2014) Combined effects of earthworms and IAA-producing rhizobacteria on plant growth and development. Appl Soil Ecol 80:100–107

    Google Scholar 

  • Chaney RL et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    CAS  PubMed  Google Scholar 

  • Cheng J, Wong MH (2002) Effects of earthworms on Zn fractionation in soils. Biol Fertil Soils 36:72–78

    CAS  Google Scholar 

  • Conder JM, Lanno RP (2000) Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida. Chemosphere 41:1659–1668

    CAS  PubMed  Google Scholar 

  • Crowley DE, Reid CP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87:680–685

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crowley DE et al (1992) Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant and Soil 142:1–7

    CAS  Google Scholar 

  • Dandan W et al (2007) Role of earthworm-straw interactions on phytoremediation of Cu contaminated soil by ryegrass. Acta Ecol Sinica 27:1292–1298

    Google Scholar 

  • Dechaine J et al (2005) Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico. Pedobiologia 49:601–607

    Google Scholar 

  • Del Val C, Barea JM, Azcón-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dempsey MA et al (2013) Exotic earthworms alter soil microbial community composition and function. Soil Biol Biochem 67:263–270

    CAS  Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Biotechnology 3:1–5

    Google Scholar 

  • Derouard L et al (1997) Effects of earthworm introduction on soil processes and plant growth. Soil Biol Biochem 29:541–545

    CAS  Google Scholar 

  • Devliegher W, Verstraete W (1996) Lumbricus terrestris in a soil core experiment: effects of nutrient- enrichment processes (NEP) and gut-associated processes (GAP) on the availability of plant nutrients and heavy metals. Soil Biol Biochem 28:489–496

    CAS  Google Scholar 

  • Dimkpa C, Merten D, Svatoš A (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    CAS  Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soil health and sustainable productivity. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 1–28

    Google Scholar 

  • Doube BM, Buckerfield JC, Kirkegaard JA (1994) Short-term effects of tillage and stubble management on earthworm populations in cropping systems in southern New South Wales. Aust J Agr Res 45:1587–1600

    Google Scholar 

  • Doube BM et al (1997) Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study. Soil Biol Biochem 29:569–575

    CAS  Google Scholar 

  • Du Y et al (2014) Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium. Soil Biol Biochem 72:193–202

    CAS  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agr Ecosyst Environ 24:235–247

    Google Scholar 

  • Edwards WM et al (1992) Role of Lumbricus terrestris (L.) burrows on quality of infiltrating water. Soil Biol Biochem 24:1555–1561

    Google Scholar 

  • Eisenhauer N, König S, Sabais A (2009) Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol Biochem 41:561–567

    CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    CAS  PubMed  Google Scholar 

  • Fuhrman JK et al (2005) Water-soluble phosphorus as affected by soil to extractant ratios, extraction times, and electrolyte. Commun Soil Sci Plant Anal 36:925–935

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4), Available at: http://www.currentscience.ac.in/Downloads/article_id_086_04_0528_0534_0.pdf. Accessed 11 Sep 2014

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Glick B (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    CAS  PubMed  Google Scholar 

  • Gómez-Brandón M, Lores M, Domínguez J (2012) Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter. PLoS One 7:e31895

    PubMed Central  PubMed  Google Scholar 

  • Grandlic C, Palmer M, Maier R (2009) Optimization of plant growth-promoting bacteria-assisted phytostabilization of mine tailings. Soil Biol Biochem 41(8):1734–1740

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hassan SED et al (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20(16):3469–3483, Available at: http://www.ncbi.nlm.nih.gov/pubmed/21668808. Accessed 11 Sep 2014

    Google Scholar 

  • Hobbelen P, Koolhaas J, van Gestel C (2006) Effects of heavy metals on the litter consumption by the earthworm Lumbricus rubellus in field soils. Pedobiologia 50:51–60

    CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London

    Google Scholar 

  • Hu Q et al (2007) Bacterial diversity in soils around a lead and zinc mine. J Environ Sci 19(1):74–79

    CAS  Google Scholar 

  • Hui N, Liu XX, Kurola J, Mikola J, Romantschuk M (2012) Lead (Pb) contamination alters richness and diversity of the fungal, but not the bacterial community in pine forest soil. Boreal Env Res 17:46–58

    CAS  Google Scholar 

  • James SW (1991) Soil, nitrogen, phosphorus, and organic matter processing by earthworms in tallgrass prairie. Ecology 72:2101–2109

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Joschko M, Diestel H, Larink O (1989) Assessment of earthworm burrowing efficiency in compacted soil with a combination of morphological and soil physical measurements. Biol Fertil Soils 8:191–196

    Google Scholar 

  • Jusselme MD et al (2012) Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Sci Total Environ 416:200–207

    CAS  PubMed  Google Scholar 

  • Jusselme MD et al (2013) Increased lead availability and enzyme activities in root-adhering soil of Lantana camara during phytoextraction in the presence of earthworms. Sci Total Environ 445–446:101–109

    PubMed  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  PubMed  Google Scholar 

  • Kızılkaya R (2008) Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn. Bioresour Technol 99:946–953

    PubMed  Google Scholar 

  • Krišrtuek V, Ravasz K, Pižl V (1992) Changes in densities of bacteria and microfungi during gut transit in Lumbricus rubellus and Aporrectodea caliginosa (Oligochaeta: Lumbricidae). Soil Biol Biochem 24:499–1500

    Google Scholar 

  • Kylander ME et al (2008) Lead penetration and leaching in a complex temperate soil profile. Environ Sci Tech 42:3177–3184

    CAS  Google Scholar 

  • Langdon CJ et al (1999) Resistance to arsenic-toxicity in a population of the earthworm Lumbricus rubellus. Soil Biol Biochem 31:1963–1967

    CAS  Google Scholar 

  • Lanno RP, Mccarty LS (1997) Earthworm bioassays: adopting techniques from aquatic toxicity testing. Soil Biol Biochem 29:693–697

    CAS  Google Scholar 

  • Lavelle P (1981) Stratégies de reproduction chez les vers de terre (in French, with English summary). Acta Oecol Oecol Gen 2:117–133

    Google Scholar 

  • Lavelle P (1996) Diversity of soil fauna and ecosystem function. Biol Int 33:3–16

    Google Scholar 

  • Lavelle P (1997) Biology and ecology of earthworms. Agr Ecosyst Environ 64:78–79

    Google Scholar 

  • Lavelle P (2002) Functional domains in soils. Ecol Res (October 2001). Available at: http://onlinelibrary.wiley.com/doi/10.1046/j.1440-1703.2002.00509.x/full. Accessed 17 Dec 2013

  • Lawton JH (1994) What do species do in ecosystems? Oikos 71:367–374

    Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut (Barking, Essex: 1987) 153(3):497–522, Available at: http://www.ncbi.nlm.nih.gov/pubmed/17981382. Accessed 4 Oct 2013

    CAS  Google Scholar 

  • Liu Y et al (2012) Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 7(6):p.e38858, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3372496&tool=pmcentrez&rendertype=abstract. Accessed 11 Sep 2014

    Google Scholar 

  • Lorenz N et al (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38(6):1430–1437, Available at: http://linkinghub.elsevier.com/retrieve/pii/S0038071705004104. Accessed 11 Sep 2014

    CAS  Google Scholar 

  • Losfeld G et al (2012) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910

    CAS  PubMed  Google Scholar 

  • Lukkari T, Haimi J (2005) Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotoxicol Environ Saf 62:35–41

    CAS  PubMed  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    CAS  PubMed  Google Scholar 

  • Luo C, Shen Z, Lou L et al (2006a) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut 144:862–871

    CAS  PubMed  Google Scholar 

  • Luo C, Shen Z, Li X et al (2006b) Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773–1784

    CAS  PubMed  Google Scholar 

  • Ma Y, Dickinson MN, Wong M (2002) Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biol Fertil Soils 36:79–86

    CAS  Google Scholar 

  • Ma Y, Dickinson N, Wong M (2003) Interactions between earthworms, trees, soil nutrition and metal mobility in amended Pb/Zn mine tailings from Guangdong, China. Soil Biol Biochem 35:1369–1379

    CAS  Google Scholar 

  • Ma Y, Dickinson N, Wong M (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009a) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009b) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837

    PubMed  Google Scholar 

  • Ma Y et al (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    CAS  PubMed  Google Scholar 

  • Morgan JE, Morgan AJ (1999) The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing. Appl Soil Ecol 13:9–20

    Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157–161

    CAS  PubMed  Google Scholar 

  • Ortiz-Ceballos A (2007) Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch. Biol Fertil Soils 44:181–186

    Google Scholar 

  • Oste LA et al (2001) Cadmium uptake by earthworms as related to the availability in the soil and the intestine. Environ Toxicol Chem 20:1785–1791

    CAS  PubMed  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agr Ecosyst Environ 74:137–155

    Google Scholar 

  • Parle JN (1963a) Microorganisms in the intestines of earthworms. J Gen Microbiol 31:1–11

    Google Scholar 

  • Parle JN (1963b) A microbiological study of earthworm casts. J Gen Microbiol 31:13–22

    CAS  Google Scholar 

  • Pasqualetti M et al (2012) Effects of long-term heavy metal contamination on soil fungi in the Mediterranean area. Cryptogamie, Mycologie 33:43–57

    Google Scholar 

  • Pizl V, Josens G (1995) Earthworm communities along a gradient of urbanization. Environ Pollut (Barking, Essex : 1987) 90:7–14

    CAS  Google Scholar 

  • Ruiz E, Rodríguez L, Alonso-Azcárate J (2009) Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Chemosphere 75(8):1035–1041

    CAS  PubMed  Google Scholar 

  • Ruiz E, Alonso-Azcárate J, Rodríguez L (2011) Lumbricus terrestris L. Activity increases the availability of metals and their accumulation in maize and barley. Environ Pollut 159:722–728

    CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    CAS  Google Scholar 

  • Satchell JE, Martin K (1984) Phosphatase activity in earthworm faeces. Soil Biol Biochem 16:191–194

    CAS  Google Scholar 

  • Scheu S et al (2002) Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 133:254–260

    Google Scholar 

  • Sessitsch A et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634

    CAS  Google Scholar 

  • Singh OV et al (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    CAS  PubMed  Google Scholar 

  • Sinha RK (2010) Earthworms: Charles Darwin’s “Unheralded Soldiers of Mankind”: protective & productive for man & environment. J Environ Protect 01:251–260

    Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil?–a review. Environ Pollut (Barking, Essex: 1987) 157(7):1981–1989

    CAS  Google Scholar 

  • Sizmur T, Watts MJ, Brown GD et al (2011a) Impact of gut passage and mucus secretion by the earthworm Lumbricus terrestris on mobility and speciation of arsenic in contaminated soil. J Hazard Mater 197:169–175

    CAS  PubMed  Google Scholar 

  • Sizmur T, Palumbo-Roe B, Watts MJ et al (2011b) Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Environ Pollut (Barking, Essex: 1987) 159(3):742–748, Available at: http://www.ncbi.nlm.nih.gov/pubmed/21185630. Accessed 4 Sep 2013

    CAS  Google Scholar 

  • Sizmur T, Tilston EL, Charnock J et al (2011c) Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. J Environ Monit 13(2):266–273

    CAS  PubMed  Google Scholar 

  • Sizmur T, Palumbo-Roe B, Hodson ME (2011d) Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost. Environ Pollut (Barking, Essex: 1987) 159(7):1852–1860

    CAS  Google Scholar 

  • Smolders E et al (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28:1633–1642

    CAS  PubMed  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1995) Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicology 4:190–205

    CAS  PubMed  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1996) The effects of metal contamination on earthworm populations around a smelting works: quantifying species effects. Appl Soil Ecol 4:147–160

    Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999) Tolerance to zinc in populations of the earthworm Lumbricus rubellus from uncontaminated and metal-contaminated ecosystems. Arch Environ Contam Toxicol 37:332–337

    CAS  PubMed  Google Scholar 

  • Stork NE, Eggleton P (1992) Invertebrates as determinants and indicators of soil quality. Am J Altern Agric 7:38

    Google Scholar 

  • Tao J et al (2009) Effects of earthworms on soil enzyme activity in an organic residue amended rice–wheat rotation agro-ecosystem. Appl Soil Ecol 42:221–226

    Google Scholar 

  • Tapia-Coral SC et al (2006) Effect of Pontoscolex corethrurus Muller, 1857 (Oligochaeta: Glossoscolecidae) inoculation on litter weight loss and soil nitrogen in Mesocosms in the Peruvian Amazon. Carib J Sci 42:410–418

    Google Scholar 

  • Tiunov AV, Scheu S (1999) Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biol Biochem 31:2039–2048

    CAS  Google Scholar 

  • Tiwari SC, Mishra RR (1993) Fungal abundance and diversity in earthworm casts and in uningested soil. Biol Fertil Soils 16:131–134

    Google Scholar 

  • Tiwari SC, Tiwari BK, Mishra RR (1989) Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment in earthworm casts and in the surrounding soil of a pineapple plantation. Biol Fertil Soils 8:178–182

    Google Scholar 

  • Tomati U, Grappelli A, Galli E (1988) The hormone-like effect of earthworm casts on plant growth. Biol Fertil Soils 5:288–294

    CAS  Google Scholar 

  • Udovic M, Lestan D (2007) The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Environ Pollut 148:663–668

    CAS  PubMed  Google Scholar 

  • Wang D et al (2006) Effect of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard. Biol Fertil Soils 43:120–123

    Google Scholar 

  • Wang Y et al (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81

    CAS  PubMed  Google Scholar 

  • Weltje L (1998) Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Pergamon 36(12):2643–2660

    CAS  Google Scholar 

  • Wen B et al (2004) The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils. Biol Fertil Soils 40:181–187

    CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil 321:385–408

    CAS  Google Scholar 

  • Wu SC et al (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    CAS  PubMed  Google Scholar 

  • Wu F et al (2012) Effects of earthworms and plant growth-promoting rhizobacteria (PGPR) on availability of nitrogen, phosphorus, and potassium in soil. J Plant Nutr Soil Sci 175:423–433

    CAS  Google Scholar 

  • Yu X, Cheng J, Wong M (2005) Earthworm–mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201

    CAS  Google Scholar 

  • Zhang H, Schrader S (1993) Earthworm effects on selected physical and chemical properties of soil aggregates. Biol Fertil Soils 15:229–234

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Rouland-Lefevre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jusselme, M.D., Miambi, E., Lebeau, T., Rouland-Lefevre, C. (2015). Role of Earthworms on Phytoremediation of Heavy Metal-Polluted Soils. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_15

Download citation

Publish with us

Policies and ethics