Skip to main content

Functional Diversity of Microorganisms in Heavy Metal-Polluted Soils

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

In this chapter, we summarize the results from studies designed to assess the impacts of heavy metal pollution on the physiology of soil microorganisms based on a variety of commercially available assays (Biolog and MicroResp) of community substrate use. The results and conclusions from these studies are contradictory, depending on the metal concentrations and speciation, local environmental characteristics, and finally the different interpretations by the authors of the actual levels of pollution. In general, low and moderate levels (according to the Nemerow index) of metal pollution do not affect carbon use ability and functional diversity of the impacted microbial communities, as opposed to high metal pollution levels where significant adverse effects are recorded as functional responses of microbial communities to metal stress. Microbial functional responses to metal stress were observed as reduced catabolic activity and functional diversity, preferential community shifts from one carbon substrate use to another, and/or increased pollution-induced community tolerance. Finally, the microbial responses are summarized in the context of the modifying effects of the local environment on metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol 30:21–33

    Article  Google Scholar 

  • Bååth E, Díaz-Raviña BLR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505

    Article  PubMed  Google Scholar 

  • Balser TC (2000) Linking soil microbial communities and ecosystem functioning. PhD dissertation. University of California-Berkeley, Berkeley, CA

    Google Scholar 

  • Banning NC, Lalor BM, Cookson WR, Grigg AH, Murphy DV (2012) Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: which substrates discriminate? Appl Soil Ecol 56:27–34

    Article  Google Scholar 

  • Bérard A, Mazzia C, Sappin-Didier V, Capowiez L (2014) Use of the MicroResp™ method to assess pollution-induced community tolerance in the context of metal soil contamination. Ecol Indicat 40:27–33

    Article  Google Scholar 

  • Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess 8:1003–1034

    Article  Google Scholar 

  • Blanck H, Wängberg S-Å, Molander S (1988) Pollution-induced community tolerance—a new ecotoxicological tool. In: Cairns J, Pratt JR (eds) Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals. American Society for Testing Materials, Philadelphia PA, pp 219–230

    Chapter  Google Scholar 

  • Bochner BR (1989) Sleuthing out bacterial identities. Nature 339:157–158

    Article  CAS  PubMed  Google Scholar 

  • Boivin MEY, Greve GD, Kools SAE, van der Wurff AWG, Leeflang P, Smit E, Breure AM, Rutgers M, van Straalen NM (2006) Discriminating between effects of metals and natural variables in terrestrial bacterial communities. Appl Soil Ecol 34:103–113

    Article  Google Scholar 

  • Bölter M (1990) Microbial ecology of soil from Wilkes Land Antarctica: 1. The bacterial population ant its activity in relation to dissolved organic matter. Proc NIPR Symp Polar Biol 3:104–119

    Google Scholar 

  • Brandt KK, Frandsen RJN, Holm PE, Nybroe O (2010) Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biol Biochem 42:748–757

    Article  CAS  Google Scholar 

  • Buyer JS, Drinkwater LE (1997) Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J Microbiol Methods 30:3–11

    Article  CAS  Google Scholar 

  • Buyer JS, Roberts DP, Millner P, Russek-Cohen E (2001) Analysis of fungal communities by sole carbon source utilization profiles. J Microbiol Methods 45:53–60

    Article  CAS  PubMed  Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell CD, Grayston SJ, Hirst D (1997) Use of rhizosphere C sources in sole C sources to discriminate soil microbial communities. J Microbiol Methods 30:33–41

    Article  Google Scholar 

  • Chodak M, Pietrzykowski M, Niklińska M (2009) Development of microbial properties in a chronosequence of sandy mine soils. Appl Soil Ecol 41:259–268

    Article  Google Scholar 

  • Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P (2004) Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl Soil Ecol 25:99–109

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Davis MRH, Zhao F-J, McGrath SP (2004) Pollution-induced community tolerance of soil microbes in response to a zinc gradient. Environ Toxicol Chem 23:2665–2672

    Article  CAS  PubMed  Google Scholar 

  • Degens BP, Harris JA (1997) Developments of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decrease in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    Article  CAS  Google Scholar 

  • Dobler R, Saner M, Bachofen R (2000) Population changes of soil microbial communities induced by hydrocarbon and heavy metal contamination. Biorem J 4:41–56

    Article  CAS  Google Scholar 

  • Ellis RJ, Best JG, Fry JC, Morgan P, Neish B, Trett MW, Weightman AJ (2002) Similarity of microbial and meiofaunal community analyses for mapping ecological effects of heavy-metal contamination in soil. FEMS Microbiol Ecol 20:113–122

    Article  Google Scholar 

  • Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and –independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epelde L, Becerril JM, Hermández-Allisa J, Barrutia O, Garbisu C (2008) Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39:299–310

    Article  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goberna M, Insam H, Klammer S, Pascual JA, Sanchez J (2005) Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb Ecol 50:315–326

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Siciliano SD, Srivastava S, Greer CW, Sunahara GI (2002) Assessment of pollution-induced microbial community tolerance to heavy metals in soil using ammonia-oxidizing bacteria and Biolog assay. Hum Ecol Risk Assess 8:1067–1081

    Article  Google Scholar 

  • Gremion F, Chatzinotas A, Kaufmann K, von Sigler W, Harms H (2004) Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol Ecol 48:273–283

    Article  CAS  PubMed  Google Scholar 

  • Haack SK, Garchow H, Klug MJ, Forney LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61:1458–1468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Smalla K (1997) Evaluation of community-level catabolic profiling using BIOLOG GN microplates to study microbial community changes in potato phyllosphere. J Microbiol Methods 30:49–61

    Article  CAS  Google Scholar 

  • Hollibaugh JT (1994) Relationship between thymidine metabolism, bacterioplankton community metabolic capacities, and source of organic matter. Microb Ecol 28:117–131

    Article  CAS  PubMed  Google Scholar 

  • Hofman J, Dušek K, Klánová J, Bezchlebová J, Holoubek I (2004) Monitoring microbial biomass and respiration in different soils from the Czech Republic—a summary of results. Environ Int 30:19–30

    Article  PubMed  Google Scholar 

  • Hornburg V, Brümmer GW (1993) Verhalten von schwermetallen in böden. 1. Untersuchungen zur schwermetallmobilität. Z Pflanz Bodenkunde 156:467–477

    Article  CAS  Google Scholar 

  • Insam H (1997) A new set of substrates proposed for community characterization in environmental samples. In: Insam H, Ranger A (eds) Microbial communities. Functional versus structural approaches. Springer, Berlin, pp 259–260

    Chapter  Google Scholar 

  • Insam H, Goberna M (2004) Community level physiological profiles (Biolog substrate use tests) of environmental samples. In: Akkermans ADL, van Elsas JD, DeBruijn FJ (eds) Molecular Microbial Ecology Manual, 2nd edn. Kluwer Academic Publ, Dordrecht, pp 1–8

    Google Scholar 

  • Izquierdo M, Tye AM, Chenery SR (2013) Lability, solubility and speciation of Cd, Pb and Zn in alluvial soils of the River Trent catchment UK. Environ Sci Process Impacts 15:1844–1858

    Article  CAS  PubMed  Google Scholar 

  • Jusselme MD, Poly FP, Miambi E, Mora P, Blouin M, Pando A, Rouland-Lefévre C (2012) Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Sci Total Environ 416:200–207

    Article  CAS  PubMed  Google Scholar 

  • Kenarova A, Encheva M, Chipeva V, Chipev N, Hristova P, Moncheva P (2013) Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland Archipelago, Antarctica. Polar Biol 36:223–233

    Article  Google Scholar 

  • Kenarova A, Rradeva G (2010) Inhibitory effects of total and water soluble concentrations of heavy metals on microbial dehydrogenase activity. C R Acad Bulg Sci 63:1029–1033

    CAS  Google Scholar 

  • Kenarova A, Radeva G, Traykov I, Boteva S (2014) Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites. Ecotoxicol Environ Saf 100:226–232

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Scullion J (2000) Effect of soil on microbial responses to metal contamination. Environ Pollut 110:115–125

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl Soil Ecol 20:145–155

    Article  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006) The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut 143:129–137

    Article  CAS  PubMed  Google Scholar 

  • Konopka A, Oliver L, Turco R (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Buma DS, De Boer W, Klinkhamer PG, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520

    Article  PubMed  Google Scholar 

  • Lalor BM, Cookson WR, Murphy DV (2007) Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem. Soil Biol Biochem 39:454–462

    Article  CAS  Google Scholar 

  • Lewis DE, White JR, Wafula D, Athar R, Dickerson T, Williams HN, Chauhan A (2010) Soil functional diversity analysis of a bauxite-mined restoration chronosequence. Microb Ecol 59:710–723

    Article  PubMed  Google Scholar 

  • Li J, Jin Z, Gu Q (2011) Effect of plant species on the function and structure of the bacterial community in the rhizosphere of lead-zinc mine tailings in Zhejiang, China. Can J Microbiol 57:569–577

    Article  CAS  PubMed  Google Scholar 

  • Masto RE, Ahirwar R, George J, Ram LC, Selvi VA (2011) Soil biological and biochemical response to Cd exposure. Open J Soil Sci 1:8–15

    Article  CAS  Google Scholar 

  • Mebride MB, Richards BK, Steenhuis T, Russo JJ, Sauve S (1997) Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Sci 162:487–500

    Article  Google Scholar 

  • Müller AK, Westergaard K, Christensen S, Sørensen SJ (2001) The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol 36:11–19

    Article  PubMed  Google Scholar 

  • Muñiz S, Lacarta J, Pata M, Liménez JJ, Navarro E (2014) Analysis of the diversity of substrate utilization of soil bacteria exposed to Cd and earthworms activity using generalized additive models. PLoS One 9(1):e85057. doi:10.1371/journal.pone.0085057

    Article  PubMed Central  PubMed  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Niklińska M, Chodak M, Laskowski R (2005) Characterization of the forest humus microbial community in a heavy metal polluted area. Soil Biol Biochem 37:2185–2194

    Article  Google Scholar 

  • Niklińska M, Chodak M, Laskowski R (2006) Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl Soil Ecol 32:265–272

    Article  Google Scholar 

  • Niklińska M, Chodak M, Stefanowicz A (2004) Community level physiological profiles of microbial communities from forest humus polluted with different amounts of Zn, Pb, and Cd—preliminary study with Biolog ecoplates. Soil Sci Plant Nutr 50:941–944

    Article  Google Scholar 

  • Pascaud A, Soulas M-L, Amellal S, Soulas G (2012) An integrated analytical approach for assessing the biological status of the soil microbial community. Eur J Soil Biol 49:98–106

    Article  Google Scholar 

  • Pennanen T (2001) Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH-a summary of the use of phospholipids fatty acids, Biolog and H-thymidine incorporation methods in field studies. Geoderma 100:91–126

    Article  CAS  Google Scholar 

  • Preston S, Wirth S, Ritz K, Griffiths BS, Young IM (2001) The role played by microorganisms in the biogenesis of soil cracks: importance of substrate quantity and quality. Soil Biol Biochem 33:1851–1858

    Article  CAS  Google Scholar 

  • Rajapaksha RMCP, Tobor-Lapłan MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudel H, Wenzel A, Terytze K (2001) Quantification of soluble chromium(VI) in soils and evaluation of ecotoxicological effects. Environ Geochem Health 23:219–224

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant response to xeric and mesic conditions. Soil Biol Biochem 41:1882–1893

    Google Scholar 

  • Shishido M, Chanway CP (1998) Storage effects on indigenous soil microbial communities and PGPR efficacy. Soil Biol Biochem 30:939–947

    Article  CAS  Google Scholar 

  • Stefanowicz AM, Niklińska M, Laskowski R (2009) Pollution-induced tolerance of soil bacterial communities in meadow and forest ecosystems polluted with heavy metals. Eur J Soil Biol 45:363–369

    Article  CAS  Google Scholar 

  • Tischner S, Tanneberg H, Guggenberger G (2008) Microbial parameters of soils contaminated with heavy metals: assessment for ecotoxicological monitoring. Pol J Ecol 56:471–479

    Google Scholar 

  • Van Beelen P, Wouterse M, Posthuma L, Rutgers M (2004) Location-specific ecotoxicological risk assessment of metal-polluted soils. Environ Toxicol Chem 23:2769–2779

    Article  PubMed  Google Scholar 

  • Van Hees PAW, Godbold DL, Jentschke G, Jones DL (2003) Impact of ectomycorrhizas on the concentrations and biodegradation of simple organic acids in a forest soil. Eur J Soil Sci 54:697–706

    Article  Google Scholar 

  • Wang Q, Dai J, Yu Y, Zhang Y, Shen T, Liu J, Wang R (2010) Efficiencies of different microbial parameters as indicator to assess slight metal pollutions in a farm field near a gold mining area. Environ Monit Assess 161:495–508

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang R, Tian C, Yu Y, Zhang Y, Dai J (2012) Using microbial community functioning as the complementary environmental condition indicator: a case study of an iron deposit tailing area. Eur J Soil Biol 51:22–29

    Article  Google Scholar 

  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Winding A, Hendriksen NB (1997) Biolog substrate utilization assay for metabolic fingerprints of soil bacteria: incubation effects. In: Insam H, Rangger A (eds) Microbial communities. Functional versus structural approaches. Springer, Berlin, pp 195–205

    Chapter  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concept. Ecotoxicol Environ Saf 62:230–248

    Article  CAS  PubMed  Google Scholar 

  • Yan F, McBratney AB, Copeland L (2000) Functional substrate diversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales. Geoderma 96:321–343

    Article  Google Scholar 

  • Yang R, Tang J, Chen X, Hu S (2007) Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl Soil Ecol 37:240–246

    Article  Google Scholar 

  • Yuangen Y, Campbell CD, Clark L, Cameron CM, Paterson E (2006) Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere 63:1942–1952

    Article  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zeng LS, Liao M, Chen LC, Huang YC (2007) Effects of lead contamination on soil enzymatic activities, microbial biomass and rice physiological indices in soil-lead-rice (Oryza sativa L.) system. Ecotoxicol Environ Saf 67:67–74

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ahao FJ, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelia Kenarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kenarova, A., Boteva, S. (2015). Functional Diversity of Microorganisms in Heavy Metal-Polluted Soils. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_13

Download citation

Publish with us

Policies and ethics