Skip to main content

Adaptation Mechanisms of Pinus sylvestris L. in Industrial Areas

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

In spite of a positive direction of changes occurring in the contaminated environment, the local industry still appears to exert a negative influence on plant vegetation. Forests which grow in many highly industrialized zones enable research on the influence of anthropopression on the natural population and are one of the best models for the study of plant adaptation to heavy metals in soil. In some cases, it is possible to follow processes of re-naturalization occurring on post-industrial areas in situ. Research undertaken in heavily polluted regions pointed to an interesting phenomenon of differentiation among the Scots pine populations with respect to the health status. Adaptive genetic diversity reflects differences in the survival capabilities of individuals exposed to stress and shows the selective pressure against trees with specific genotypes. This chapter emphasizes on the Scots pine (Pinus sylvestris L.) as one of the most frequently used bioindicators in the European forests and their application in the study of microevolutionary processes in tree populations. It may enhance a better understanding of how the soil pollution can change the genetic structure of important forest species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badri M, Zitoun A, Ilahi H, Huguet T, Aouani M (2008) Morphological and microsatellite diversity associated with ecological factors in natural populations of Medicago laciniata Mill. (Fabaceae). J Genet 87(3):241–255

    Article  CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Bras J Plant Physiol 17(1):21–34

    CAS  Google Scholar 

  • Bergmann F, Hosius B (1996) Effects of heavy-metal polluted soils on the genetic structure of Norway spruce seedlings populations. Water Air Soil Poll 89:363–373

    Article  CAS  Google Scholar 

  • Bittsanszky A, Kӧmives T, Gullne G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc (2+) stress. Environ Int 31:251–254

    Article  CAS  PubMed  Google Scholar 

  • Butorina AK, Kalaеv VN, Mazurova SA, Doroshev EV (2001) Cytogenetic variation in populations of Scots pine. Russ J Ecol 32(3):198–202

    Article  Google Scholar 

  • Butorina AK, Vostrikova TV (2006) Cytogenetic responses of birch to stress factors. Biol Bull 33(2):85–190

    Google Scholar 

  • Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B126:455–476

    Article  Google Scholar 

  • Chudzińska E (2013) Genetic diversity of Scots pine (Pinus sylvestris L.) as an expression of adaptation to heavy industrial pollution: a case study of the population from Miasteczko Śląskie. Wydawnictwo Naukowe UAM, Seria Biologica, Poznań

    Google Scholar 

  • Chudzińska E, Diatta J, Półtorak W (2013a) Adaptation strategies and referencing trial of Scots and black pine populations subjected to heavy metal pollution. Environ Sci Pollut Res 21:2165–2177. doi:10.1007/s11356-013-2081-3

    Article  Google Scholar 

  • Chudzińska E, Pawlaczyk EM, Celiński K, Diatta J (2013b) Response of Scots pine (Pinus sylvestris L.) to stress induced by different types of pollutants—testing the fluctuating asymmetry. Water Environ J 28:533–539. doi:10.1111/wej.12068

    Article  Google Scholar 

  • Chudzińska E, Urbaniak L (2008) Pinus sylvestris L. response to heavy metal contamination express in anatomical traits of needles. Manag Environ Protect Forests 2:72–84

    Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann Forest Sci 68:17–24

    Article  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  CAS  PubMed  Google Scholar 

  • Deng DM, Shu WS, Zhang J, Zou HL, Ye ZH, Wong MH, Lin Z (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ Pollut 147:381–386

    Article  CAS  PubMed  Google Scholar 

  • Derome J, Saarsalmi A (1999) The effect of liming and correction fertilization on heavy metal and macronutrients concentrations in soil solutions in heavy metal polluted Scots pine stands. Environ Pollut 104:249–259

    Article  CAS  Google Scholar 

  • Diatta JB, Chudzinska E, Wirth S (2008) Assessment of heavy metal contamination of soils impacted by a zinc smelter activity. J Elementol 13(1):5–16

    Google Scholar 

  • Diatta JB, Wirth S, Chudzinska E (2011) Spatial distribution of Zn, Pb, Cd, Cu, and dynamics of bioavailable forms at a Polish metallurgical site. Fresen Environ Bull 20(4):976–982

    CAS  Google Scholar 

  • Dickinson NM, Turner AP, Lepp NW (1991) How do trees and other long lived plants survive in polluted environments. Funct Ecol 5:5–11

    Article  Google Scholar 

  • Ellegrin H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. Forest Snow Landscape Res 80:251–274

    Google Scholar 

  • Eveno E, Collada C, Guevara MA, Léger V, Soto A et al (2008) Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25(2):417–437

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fluch S, Burg A, Kopecky D, Homolka A, Spiess N, Vendramin G (2011) Characterization of variable EST SSR markers for Norway spruce (Picea abies L.). BMC Res Notes 4:401–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geburek T, Scholz F, Knabe W, Vornweg A (1987) Genetic studies by isoenzyme gene loci on tolerance and sensitivity in an air polluted Pinus sylvestris field trial. Silv Genet 36:49–53

    Google Scholar 

  • Godbold DL (1998) Stress concepts and forest trees. Chemosphere 35(4–5):859–864

    Article  Google Scholar 

  • González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  PubMed Central  PubMed  Google Scholar 

  • Guttman SI (1994) Population genetic structure and ecotoxicology. Environ Health Perspect 102(Suppl 12):97–100

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Harju L, Saarela KE, Rajander J, Lill JO, Lindroos A, Heselius SJ (2002) Environmental monitoring of trace elements in bark of Scots pine by thick—target PIXE. Nucl Instrum Methods 189:163–167

    Article  CAS  Google Scholar 

  • Hur M, Kim Y, Song H, Kim JM, Choi YI, Yi H (2011) Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl Environ Microbiol 77:7611–7619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanov YV, Savochkin YV, Kuznietzov V (2011) Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 1. Effects of continuous zinc presence on morphometric and physiological characteristics of developing pine seedlings. Russ J Plant Physiol 58(5):871–878

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil–plant transfer of trace elements: an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Kalashnik NA (2008) Chromosome aberration as indicator of technogenic impact of Conifer stands. Russ J Ecol 39(4):261–271

    Article  Google Scholar 

  • Kim GH, Bell JN, Power SA (2003) Effects of soil cadmium on Pinus sylvestris L. seedlings. Plant Soil 257:443–449

    Article  CAS  Google Scholar 

  • Klánowá J, Čupr P, Baráková D, Šeda Z, Anděl P, Holoubek I (2009) Can pine needles indicate trends in the air pollution levels at remote sites? Environ Pollut 157(12):3248–3254

    Article  Google Scholar 

  • Korshikov II, Velikorydko TI, Butilskaya IA (2002) Genetic structure and variation in Pinus sylvestris L. populations degrading due to pollution-induced injury. Silv Genet 51(2–3):45–49

    Google Scholar 

  • Kovalchuk I, Abramov V, Pogribny I, Kovalchuk O (2004) Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiol 135:357–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozlov MV, Niemelä P, Junttila J (2002) Needle fluctuating asymmetry is a sensitive indicator of pollution impact on Scots pine (Pinus sylvestris). Ecol Indic 1:271–277

    Article  CAS  Google Scholar 

  • Kozlov MV, Zvereva E (2011) A second life for old data: global patterns in pollution ecology revealed from published observational studies. Environ Pollut 159:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Kozlov MV, Zvereva E, Zverev V (2009) Impacts of point polluters on Terrestrial Biota. Environ Pollut 15:197–224

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Article  Google Scholar 

  • Krznaric E, Verbruggenc N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157(5):1581–1588

    Article  CAS  PubMed  Google Scholar 

  • Lerner IM (1954) Genetic homeostasis. Olivier and Boyd, Edinbourgh

    Google Scholar 

  • Lin JX, Sampson DA, Ceulemans R (2001) The effect of crown position and tree age on resin-canal density in Scots pine (Pinus sylvestris L.) needles. Can J Bot 79:1257–1261

    Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol System 27:237–277

    Article  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:391–406

    Article  Google Scholar 

  • Longauer R, Gomory D, Paule L, Karnosky F, Mankovska B et al (2001) Selection effects of air pollution on gene pools of Norway spruce, European silver fir and European beech. Environ Poll 115:405–411

    Article  CAS  Google Scholar 

  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Article  CAS  Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Banuelos G, Terry N (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, pp 235–250

    Google Scholar 

  • Manara A (2012) Plant responses to heavy metals toxicity. In: Furini A (ed) Plants and heavy metals, Briefs in biometals. Springer, New York, pp 27–52

    Chapter  Google Scholar 

  • Markert B, Wünschmann S, Diatta J, Chudzińska E (2012) Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications. Environ Protect Nat Resour 37(2):115–152

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mehes-Smith M, Nkongolo K, Cholewa E (2013) Coping mechanisms of plants to metal contaminated soil. In: Dr. Steven Silvern (ed) Environmental change and sustainability. InTech. ISBN:978-953-51-1094-1

    Google Scholar 

  • Meyer CL, Kostecka AA, Saumitou-Laprade P, Creach A, Castric V, Pauwels M, Frerot H (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130–142

    Article  CAS  PubMed  Google Scholar 

  • Mičieta K, Murin G (1998) Tree species of genus Pinus suitable as bioindicators of polluted environment. Water Air Soil Poll 104:413–422

    Article  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller-Starck G (1985) Genetic differences between tolerant and sensitive beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silv Genet 34:241–246

    Google Scholar 

  • Nevo E, Beharav A, Meyer MC, Hackett CA, Forster BP, Russell JR, Handley LL, Peña L, Séguin A (2001) Recent advances in the genetic transformations of trees. Trends Biotechnol 19(12):500–506

    Article  Google Scholar 

  • Nieminen T, Helmisaari H-S (1996) Nutrient translocation in the foliage of Pinus sylvestris L. growing along a heavy metal pollution gradient. Tree Physiol 16:825–831

    Article  CAS  PubMed  Google Scholar 

  • Nkongolo KK, Deck A, Michael P (2001) Molecular and cytological analyses of Deschampsia cespitosa populations from Northern Ontario (Canada). Genome 44:818–825

    Article  CAS  PubMed  Google Scholar 

  • Novikova TN, Milyutin LI (2006) Variation in certain characters and properties of Scotch pine needles in geographic cultures. Russ J Ecol 37(2):90–96

    Article  Google Scholar 

  • Nowakowska J (2006) Zastosowanie markerów DNA (RAPD, SSR, PCR-RFLP i STS) w genetyce drzew leśnych, entomologii, fitopatologii i łowiectwie. Leśne Prace Badawcze 1:73–101

    Google Scholar 

  • Oficerov E, Igonina S (2008) Genetic consequences of irradiation in a Scots Pine (Pinus sylvestris L.) population. Russ J Genet 45(2):183–188

    Article  Google Scholar 

  • Ogawa K, Iwabuchi M (2001) A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol 42:286–291

    Article  CAS  PubMed  Google Scholar 

  • Oleksyn J, Prus-Głowacki W, Giertych M, Reich PB (1994) Relation between genetic diversity and pollution impact in an experiment with East-European Pinus sylvestris provenances. Can J Forest Res 24:2390–2394

    Article  Google Scholar 

  • Palowski B (2000) Seed yield from polluted stands of Pinus sylvestris L. New Forests 20(1):15–22

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme K, Jansen M (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–102

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV, Hagemeyer J (2004) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Prus-Głowacki W, Chudzińska E, Wojnicka-Półtorak A, Kozacki L, Fagiewicz K (2006) Effects of heavy metal pollution on genetic variation and cytological disturbances in the Pinus sylvestris L. population. J Appl Genet 47(2):99–108

    Article  PubMed  Google Scholar 

  • Prus-Głowacki W, Godzik S (1991) Changes induced by zinc smelter pollution in the genetic structure of pine (Pinus sylvestris L.) seedling population. Silv Genet 40(5/6):184–188

    Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. The case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Rice KJ, Emery NC (2003) Managing microevolution: restoration in the face of global change. Front Ecol Environ 1(9):469–478

    Article  Google Scholar 

  • Rocha EP, Matic I, Taddei F (2002) Over-representation of repeats in stress response genes: a strategy to increase versatility under stressful conditions? Nucleic Acids Res 30:1886–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schaberg PG, DeHayes D, Hawley GJ, Nijensohn S (2008) Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience. Forest Ecol Manag 256:855–862

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:135–152

    Article  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. CRC, Boca Raton, pp 171–188

    Google Scholar 

  • Scholz F (1991) Population-level processes and their relevance to the evolution in plants under gaseous air pollutants. In: Taylor GE, Pitelka LF, Clegg MT (eds) Ecological genetics and air pollution. Springer-Verlag, New York, pp 167–176

    Chapter  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed Central  PubMed  Google Scholar 

  • Sedelnikova TS, Muratova EN (2001) Karyological study of Pinus sylvestris (Pinaceae) with Witches’ Broom growing on bog. Bot Zurnau 86(12):50–60

    Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang W, Charles TC, Newton RJ (2005) (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol 59:603–617

    Article  CAS  PubMed  Google Scholar 

  • Theodorakis CW (2001) Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology 10:245–256

    Article  CAS  PubMed  Google Scholar 

  • Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerances of plants. Plant Cell Environ 11:383–394

    Article  CAS  Google Scholar 

  • Van Assche F, Cardinaels C, Clijsters H (1998) Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose–response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52(2):103–115

    Article  Google Scholar 

  • Van Straalen N, Timmermans MJTN (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess 8(5):983–1002

    Article  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waalkes MP, Goering PL (1990) Metallothionein and other cadmium-binding proteins: recent developments. Chem Res Toxicol 3:281–288

    Article  CAS  PubMed  Google Scholar 

  • Xue TT, Li XZ, Zhu W, Wu CA, Yang GD, Zheng CC (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger increased against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the roe of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Chudzińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chudzińska, E., Wojnicka-Półtorak, A., Prus-Głowacki, W., Celiński, K., Diatta, J.B., Drobek, L. (2015). Adaptation Mechanisms of Pinus sylvestris L. in Industrial Areas. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_11

Download citation

Publish with us

Policies and ethics