Skip to main content

Interactions Between Engineered Nanomaterials and Plants: Phytotoxicity, Uptake, Translocation, and Biotransformation

  • Chapter
  • First Online:

Abstract

The interactions between engineered nanomaterials (ENMs) and plants are of particular importance, as plants directly interact with soil, water, and the atmosphere, and serve as a potential pathway of ENMs exposure for higher species through the food chain. The aim of this chapter is to extend our current understanding about interactions between ENMs and plants, including phytotoxicity, uptake, translocation, and biotransformation of ENMs in plant systems. The mechanisms underlying ENMs phytotoxicity and bioavailability are not well understood. It is clear that more investigations are urgently required in the area of ENMs–plants interactions, as well as the development of novel techniques for in vivo characterization of ENMs to enable these fields to keep pace with the sustainable implementation of nanotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen BL, Kichambare PD, Gou P et al (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8:3899–3903

    CAS  PubMed  Google Scholar 

  • Anjum NA, Singh N, Singh MK et al (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15:1–12

    Google Scholar 

  • Anjum NA, Singh N, Singh MK et al (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841

    CAS  PubMed  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    CAS  PubMed  Google Scholar 

  • Avanasi R, Jackson WA, Sherwin B et al (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48:2792–2797

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Barnard AS (2010) One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat Nanotechnol 5:271–274

    CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919

    CAS  Google Scholar 

  • Birbaum K, Brogioli R, Schellenberg M et al (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:372–386

    Google Scholar 

  • Cañas JE, Long M, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    CAS  PubMed  Google Scholar 

  • Chen R, Ratnikova T, Stone M et al (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617

    CAS  PubMed  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants–effects of size and crystalline structure. Chemosphere 90:1083–1090

    PubMed  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    CAS  PubMed  Google Scholar 

  • Corredor E, Testillano P, Coronado M et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    PubMed Central  PubMed  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y et al (2012) Fullerene-enhanced accumulation of p, p′-DDE in agricultural crop species. Environ Sci Technol 46:9315–9323

    Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y et al (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Google Scholar 

  • Dimkpa CO, Mclean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Google Scholar 

  • Dimkpa CO, Latta DE, Mclean JE et al (2013) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    CAS  PubMed  Google Scholar 

  • Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    CAS  PubMed  Google Scholar 

  • Fellows R, Wang Z, Ainsworth C (2003) Europium uptake and partitioning in oat (Avena sativa) roots as studied by laser-induced fluorescence spectroscopy and confocal microscopy profiling technique. Environ Sci Technol 37:5247–5253

    CAS  PubMed  Google Scholar 

  • Franklin N, Rogers N, Apte S et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    CAS  PubMed  Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson M et al (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8(Suppl 1):S2

    PubMed Central  PubMed  Google Scholar 

  • Gao F, Liu C, Qu C et al (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211–217

    CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    CAS  PubMed  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels Plant and human lymphocytes. Chemosphere 81:1253–1262

    CAS  PubMed  Google Scholar 

  • Glenn JB, White SA, Klaine SJ (2012) Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ Toxicol Chem 31:194–201

    CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC et al (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    CAS  PubMed  Google Scholar 

  • Hischemoller A, Nordmann J, Ptacek P et al (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5:278–284

    PubMed  Google Scholar 

  • Holbrook R, Murphy K, Morrow J et al (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355

    CAS  PubMed  Google Scholar 

  • Hong J, Peralta-Videa JR, Rico CM et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385

    CAS  PubMed  Google Scholar 

  • Hu X, Zhou Q (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782

    PubMed Central  PubMed  Google Scholar 

  • Johnson AC, Park B (2012) Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environ Toxicol Chem 31:2582–2587

    CAS  PubMed  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781

    CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, De Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    CAS  PubMed  Google Scholar 

  • Koelmel J, Leland T, Wang H et al (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228

    CAS  PubMed  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and Distribution of Ultrasmall Anatase TiO2 Alizarin Red S Nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S et al (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    CAS  PubMed  Google Scholar 

  • Lee W, An Y, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (triticum aestivum): plant agar teat for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    CAS  PubMed  Google Scholar 

  • Lee C, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    CAS  PubMed  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    PubMed  Google Scholar 

  • Levard C, Hotze EM, Lowry GV et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    CAS  PubMed  Google Scholar 

  • Liu Q, Zhao Y, Wan Y et al (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748

    CAS  PubMed  Google Scholar 

  • Liu Q, Zhang X, Zhao Y et al (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47:7490–7498

    CAS  PubMed  Google Scholar 

  • Lopez-Moreno M, De La Rosa G, Herna Ndez-Viezcas J et al (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA et al (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC et al (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    CAS  PubMed  Google Scholar 

  • Lubick N (2008) Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42:8617

    CAS  PubMed  Google Scholar 

  • Luttge U (1971) Structure and function of plant glands. Ann Rev Plant Physiol 22:23–44

    Google Scholar 

  • Ma X, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27:989–992

    CAS  Google Scholar 

  • Ma XM, Geiser-Lee J, Deng Y et al (2010a) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    CAS  PubMed  Google Scholar 

  • Ma Y, Kuang L, He X et al (2010b) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    CAS  PubMed  Google Scholar 

  • Ma Y, He X, Zhang P et al (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–753

    CAS  PubMed  Google Scholar 

  • Ma C, Chhikara S, Xing B et al (2013a) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778

    CAS  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013b) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    CAS  PubMed  Google Scholar 

  • Ma YH, Zhang P, Zhang ZY, He X, Li YY, Zhang J, Zheng LR, Chu SQ, Yang K, Zhao YL, Chai ZF (2014) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, doi:10.3109/17435390.2014.921344

  • Mauter M, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    CAS  PubMed  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444:267–269

    CAS  PubMed  Google Scholar 

  • Miller RJ, Lenihan HS, Muller EB et al (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    CAS  PubMed  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012a) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239

    CAS  PubMed  Google Scholar 

  • Miralles P, Johnson E, Church TL et al (2012b) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morales MI, Rico C, Hernandez-Viezcas J et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230

    CAS  PubMed  Google Scholar 

  • Morel J, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2:29–34

    Google Scholar 

  • Murashov V (2006) Comments on “Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles” by Yang L, Watts DJ, Toxicology Letters. 2005, 158:122–132. Toxicol Lett 164:185–187

    Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk‐size particles. Environ Toxicol 27:510–517

    Google Scholar 

  • Navarro E, Piccapietra F, Wagner B et al (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    CAS  PubMed  Google Scholar 

  • Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557

    CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    PubMed Central  PubMed  Google Scholar 

  • OECD (2003) Guideline for testing of chemicals. Terrestrial plant test 208: seedling emergence and seedling growth test. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Parsons J, Lopez M, Gonzalez C et al (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154

    CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Lijuan Z, Lopez-Moreno ML et al (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15

    CAS  PubMed  Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11

    CAS  Google Scholar 

  • Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:E2451–E2456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quik JTK, Lynch I, Van Hoecke K et al (2010) Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81:711–715

    CAS  PubMed  Google Scholar 

  • Rico CM, Hong J, Morales MI et al (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642

    CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, Mccreary R et al (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    CAS  PubMed  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360

    CAS  PubMed  Google Scholar 

  • Salas EC, Sun Z, Luttge A et al (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852–4856

    CAS  PubMed  Google Scholar 

  • Schwabe F, Schulin R, Limbach LK et al (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520

    CAS  PubMed  Google Scholar 

  • Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243

    PubMed  Google Scholar 

  • Speranza A, Leopold K, Maier M et al (2010) Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). Environ Pollut 158:873–882

    CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha S, White J (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  PubMed  Google Scholar 

  • Sun D, Hussain HI, Yi Z et al. (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Reports 1–14

    Google Scholar 

  • Tan X, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    CAS  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS et al (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    CAS  PubMed  Google Scholar 

  • Tiwari D, Dasgupta-Schubert N, Cendejas LV et al. (2013) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 1–15

    Google Scholar 

  • Torney F, Trewyn B, Victor S et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    CAS  PubMed  Google Scholar 

  • U.S.EPA (1996) U.S. environmental protection agency: ecological effects test guidelines. OPPTS 850.4150 terrestrial plant toxicity, Tier I (vegetative Vigor). EPA 712-C-96-163. Public Draft. Office of Prevention, Pesticides and Toxic Substances, Washington, DC

    Google Scholar 

  • Wang S, Kurepa J, Smalle JA (2011) Ultra–small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–820

    CAS  PubMed  Google Scholar 

  • Wang Q, Ma X, Zhang W et al (2012a) The impact of cerium oxide nanoparticles to tomato (Solanum lycopersicum L.) and its implications on food safety. Metallomics 4:1105–1112

    CAS  PubMed  Google Scholar 

  • Wang Z, Xie X, Zhao J et al (2012b) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Lombi E et al (2013a) Fate of ZnO nanoparticles in soils and Cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830

    CAS  PubMed  Google Scholar 

  • Wang Q, Ebbs S, Chen Y et al (2013b) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759

    CAS  PubMed  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Watts D (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    CAS  PubMed  Google Scholar 

  • Yin L, Cheng Y, Espinasse B et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    CAS  PubMed  Google Scholar 

  • Zhai G, Walters KS, Peate DW et al (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P et al (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257

    CAS  PubMed  Google Scholar 

  • Zhang Z, He X, Zhang H et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822

    PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2012a) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841

    CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2012b) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950

    CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2013) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 1–8

    Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA et al (2012a) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622

    CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J Hazard Mater 225:131–138

    PubMed  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA et al (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao J et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    CAS  PubMed  Google Scholar 

  • Zhu Z, Wang H, Yan B et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, P., Ma, Y., Zhang, Z. (2015). Interactions Between Engineered Nanomaterials and Plants: Phytotoxicity, Uptake, Translocation, and Biotransformation. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_5

Download citation

Publish with us

Policies and ethics