Skip to main content

Implications of Nanotechnology on Plant Productivity and Its Rhizospheric Environment

  • Chapter
  • First Online:
Nanotechnology and Plant Sciences

Abstract

Nanotechnology requires the ability to understand the materials and precisely manipulate it to nanoscale in a useful way. Nanotechnology emerged as a new broad science of diverse fields such as basic sciences, materials science, and engineering to assemble at the nanoscale. In contrast to conventional or other contaminants, nanoparticles are posing some new environmental challenges for scientists and environmentalists worldwide. Being a new area of science, nanotechnology will leave no field untouched including agriculture and allied sectors. So far, the use of nanotechnology in agriculture has been mostly theoretical, but it has begun to have a significant effect in the main areas of agrochemical industry. Nanoparticles finding great potential as delivery systems to specific targets in living organisms and is being used in medical sciences. In plants, the same principles can be applied for a broad range of uses, particularly to tackle phytopathological infections, nutrition supplement and as growth adjuvant. Nanoparticles can be tagged to agrochemicals or other substances as delivery agent to plant system and tissues for controlled release of chemicals. Doing so, the negative effects of nanomaterials on plant productivity and soil microbes and environment must not be overlooked, such as toxicity generated by free radicals leading to lipid peroxidation and DNA damage. Key focus of the chapter particularly relates the use of nanoparticles on agricultural crops and its toxic implications to plants and microbes naturally present in soil and generation of nanowaste in agroecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak T, Kumar J, Shakil NA et al (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217–225

    CAS  PubMed  Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    CAS  PubMed  Google Scholar 

  • Al-Salim N, Barraclough E, Burgess E et al (2011) Quantum dot transport in soil, plants, and insects. Sci Total Environ 409(17):3237–3248

    CAS  PubMed  Google Scholar 

  • Ao M, Zhu Y, He S et al (2013) Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology 24(3):035601–035608

    PubMed  Google Scholar 

  • Bang SH, Yu YM, Hwang IC et al (2009) Formation of size-controlled nano carrier systems by self-assembly. J Microencapsul 26(8):722–733

    CAS  PubMed  Google Scholar 

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    CAS  PubMed  Google Scholar 

  • Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43:345–353

    CAS  Google Scholar 

  • Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manag Assoc 55:708–746

    CAS  PubMed  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R et al (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    CAS  PubMed  Google Scholar 

  • Botts MF, Kohn FC, Miller ML (2006) Particles containing agricultural active ingredients. US Patent US7070795

    Google Scholar 

  • Boxall AB, Chaudhry Q, Sinclair C et al (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, UK. http://randd.defra.gov.uk/Document.aspx?Document=CB01098_6270_FRP.pdf

  • Brar SK, Verma M, Tyagi RD et al (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30:504–520

    CAS  PubMed  Google Scholar 

  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    CAS  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Canas JE, Long M, Nations S et al (2008) Effects of functionalized and non- functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Google Scholar 

  • Carmen IU, Chithra P, Huang Q et al (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29

    Google Scholar 

  • Cobbett CS, Goldsbrough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    CAS  Google Scholar 

  • Collins D, Luxton T, Kumar N et al (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE 7:e42663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornelis G, Thomas CD, McLaughlin MJ et al (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76:891–902

    CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T et al (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2013.829767

    Google Scholar 

  • De Souza MP, Pilon-Smits EAH, Terry N (1999) The physiology and biochemistry of selenium volatilization by plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 171–188

    Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N et al (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090

    CAS  PubMed  Google Scholar 

  • Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    CAS  PubMed  Google Scholar 

  • Fajardo C, Sacca ML, Costa G et al (2014) Impact of Ag and Al2O3 nanoparticles on soil organisms: in vitro and soil experiments. Sci Total Environ 473–474:254–261

    PubMed  Google Scholar 

  • Fan R, Huang YC, Grusak MA et al (2014) Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Sci Total Environ 466–467:503–512

    PubMed  Google Scholar 

  • Feng Y, Cui X, He S et al (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47(16):9496–9504

    CAS  PubMed  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14(1):75–83

    CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, Montes M et al (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresourc Technol 92:229–235

    CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    CAS  PubMed  Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26:320–327

    CAS  Google Scholar 

  • Gruere G, Clare N, Linda A (2011) Agricultural, food and water nanotechnologies for the poor: opportunities, constraints and role of the consultative group on international agricultural research. international food policy research institute (IFPRI), IFPRI Discussion Paper 01064

    Google Scholar 

  • Guan HN, Chi D, Yu J et al (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soybean fields. Crop Prot 29(9):942–946

    CAS  Google Scholar 

  • Guan HN, Chi DF, Yu J et al (2011) Novel photodegradable insecticide W/TiO(2)/Avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids Surf B Biointerfaces 83(1):148–154

    CAS  PubMed  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holden PA, Nisbet RM, Lenihan HS et al (2013) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 46(3):813–822

    CAS  PubMed  Google Scholar 

  • Hu C, Liu X, Li X et al (2014) Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants. Environ Sci Pollut Res Int 21(1):732–739

    CAS  PubMed  Google Scholar 

  • Hussein MZB, Yahya AH, Zainal Z et al (2005) Nanocomposite-based controlled release formulation of a herbicide, 2,4-dichlorophenoxyacetate encapsulated in zinc-aluminium-layered double hydroxide. Sci Technol Adv Mater 6:956–962

    Google Scholar 

  • Hwang IC, Kim TH, Bang SH et al (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agric Kyushu Univ 56(1):33–40

    CAS  Google Scholar 

  • Jin L, Son Y, DeForest JL et al (2014) Single-walled carbon nanotubes alter soil microbial community composition. Sci Total Environ 466–467:533–538

    PubMed  Google Scholar 

  • Jinghua G (2004) Synchrotron radiation, soft X-ray spectroscopy and nano-materials. J Nanotechnol 1:193–225

    Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. www.nanoforum.org. Accessed 20 April 2014

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nano-pesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol 43:1823–1867

    CAS  Google Scholar 

  • Kang MA, Seo MJ, Hwang IC et al (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541

    CAS  Google Scholar 

  • Kanimozhi V, Chinnamuthu CR (2012) Engineering core/hallow shell nanomaterials to load herbicide active ingredient for controlled release. Res J Nanosci Nanotechnol 2:58–69

    Google Scholar 

  • Kaunisto E, Tajarobi F, Abrahmsen-Alami S et al (2013) Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging. Eur J Pharm Sci 48(4–5):698–708

    CAS  PubMed  Google Scholar 

  • Kaushik P, Shakil NA, Kumar J et al (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48(8):677–685

    CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Dmitry A et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. PNAS 108(3):1028–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim B-S, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    CAS  PubMed  Google Scholar 

  • Kiser MA, Westerhoff P, Benn T et al (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763

    CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE et al (2008) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  PubMed  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N et al (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101(1):73–78

    CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    CAS  PubMed  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultra-small anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S et al (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    CAS  PubMed  Google Scholar 

  • Lee W-M, An Y-J, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to terrestrial plants Phaseolus radiatus (Mung bean) and Triticum aestivum (Wheat); plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    CAS  PubMed  Google Scholar 

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    CAS  PubMed  Google Scholar 

  • Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA 103:15617–15622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Wen L-X, Li Z-Z et al (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    CAS  Google Scholar 

  • Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812

    CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q et al (2009a) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    CAS  PubMed  Google Scholar 

  • Liu S, Wei L, Hao L et al (2009b) Sharper and faster “Nano Darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotubes. ACS Nano 3:3891–3902

    CAS  PubMed  Google Scholar 

  • Loha KM, Shakil NA, Kumar J et al (2011) Release kinetics of beta-cyfluthrin from its encapsulated formulations in water. J Environ Sci Health B 46(3):201–206

    CAS  PubMed  Google Scholar 

  • Loha KM, Shakil NA, Kumar J et al (2012) Bio-efficacy evaluation of nanoformulations of beta-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J Environ Sci Health B 47(7):687–691

    CAS  PubMed  Google Scholar 

  • Lyons K, Scrinis G, Whelan J (2011) Nanotechnology, agriculture, and food. Nanotechnology and global sustainability. CRC Press, Boca Raton, pp 117–139

    Google Scholar 

  • Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zerovalent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    CAS  PubMed  Google Scholar 

  • Maitani T, Kubota H, Sato K et al (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root culture of Rubia tinctorum. Plant Physiol 110:1145–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millan G, Agosto F, Vazquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cien Inv Agr 35(3):293–302

    Google Scholar 

  • Nelson N (1999) Metal ion transporters and homeostasis. Eur Mol Biol Organ J 18:4361–4371

    CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    CAS  PubMed  Google Scholar 

  • Pakrashi S, Jain N, Dalai S et al (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS ONE 9(2):e87789

    PubMed Central  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pankaj Shakil NA, Kumar J et al (2012) Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J Environ Sci Health B 47(6):520–528

    CAS  PubMed  Google Scholar 

  • Pereira AE, Grillo R, Mello NF et al (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    CAS  PubMed  Google Scholar 

  • Piola L, Fuchs J, Oneto ML et al (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91(4):545–551

    CAS  PubMed  Google Scholar 

  • Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS 109:E2451–E2456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Project on Emerging Nanotechnologies (2014) Consumer products inventory. http://www.nanotechproject.org/cpi. Accessed 16 April 2014

  • Rahman A, Seth D, Mukhopadhyaya SK et al (2009) Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96:31–38

    CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sacca ML, Fajardo C, Martinez-Gomariz M et al (2014) Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS ONE 9(2):e89677

    PubMed Central  PubMed  Google Scholar 

  • Sahu N, Soni D, Chandrashekhar B et al (2012) Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity. Bioprocess Biosyst Eng 36(7):999–1004

    PubMed  Google Scholar 

  • Saini P, Gopal M, Kumar R et al (2014) Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). J Environ Sci Health, Part B 49(5): doi:10.1080/03601234.2014.882168

  • Sapkota A, Anceno AJ, Baruah S et al (2011) Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology 22:215703

    PubMed  Google Scholar 

  • Sarangi BK, Pandey RA, Chakrabarti T (2009) Transgenic plants for phytoremediation of Arsenic and Chromium to enhance tolerance and hyperaccumulation. Transgenic Plant J 3(1):57–86

    Google Scholar 

  • Sarkar DJ, Kumar J, Shakil NA et al (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(11):1701–1712

    CAS  PubMed  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in Cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598

    CAS  PubMed  Google Scholar 

  • Shakil NA, Singh MK, Pandey A et al (2010) Development of poly(ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J Macromol Sci Part A 47:241–247

    CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    CAS  PubMed  Google Scholar 

  • Shi J, Peng C, Yang Y et al (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8:179–188

    CAS  PubMed  Google Scholar 

  • Six J, Feller C, Denef K et al (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775

    Google Scholar 

  • Song M-R, Cui S-M, Gao F et al (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37(3):258–260

    CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK et al (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90

    Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  PubMed  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    CAS  PubMed  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758

    CAS  PubMed  Google Scholar 

  • Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1. doi:10.4172/2325-9655.1000101

    Google Scholar 

  • Torney F, Trewyn BG, Lin S-Y et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    CAS  PubMed  Google Scholar 

  • Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    CAS  PubMed  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Jean L et al (2008) An effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere 72:763–771

    CAS  PubMed  Google Scholar 

  • Viswanathan C, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:1–12

    Google Scholar 

  • Wang L, Li X, Zhang G et al (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    CAS  PubMed  Google Scholar 

  • Xiang C, Taylor AG, Hinestroza JP et al (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86

    CAS  Google Scholar 

  • Yang F-L, Li X-G, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    CAS  PubMed  Google Scholar 

  • Yin L, Cheng Y, Espinasse B et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    CAS  PubMed  Google Scholar 

  • Zeliadt N (2010) Silver beware: antimicrobial nanoparticles in soil may harm plant life. Sci Am. Aug 9, 2010 http://www.scientificamerican.com/article/silver-beware-antimicrobial-nanoparticles-in-soil-may-harm-plant-life/

  • Zhai G, Walters KS, Peate DW et al (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151

    CAS  PubMed  Google Scholar 

  • Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    CAS  PubMed  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR et al (2013a) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci: Processes Impacts 15:260–266

    CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA et al (2013b) Influence of CeO2 and ZnO nanoparticles on Cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agr Food Chem 61(49):11945–11951

    CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ et al (2008) Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to gratefully acknowledge Director, NEERI, Nagpur, and Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjog T. Thul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thul, S.T., Sarangi, B.K. (2015). Implications of Nanotechnology on Plant Productivity and Its Rhizospheric Environment. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_3

Download citation

Publish with us

Policies and ethics