Skip to main content

Phytosynthesis of Metal Nanoparticles

  • Chapter
  • First Online:
Nanotechnology and Plant Sciences

Abstract

The field of nanotechnology has created great interest among researchers due to its remarkable outcomes in different fields of optoelectronics, medical, pharmaceuticals, chemical, and agricultural importance. It is an emerging cutting-edge technology involving different methodologies for the synthesis of nanoparticles of particular size and shapes. Development of experimental protocols for synthesis of metal nanoparticles of specific size and shape is a necessary advancement of nanotechnology. Although physical and chemical methods have been successfully used to synthesize metal nanoparticles, there is a persistent necessity to develop eco-friendly and sustainable techniques for the synthesis of nanoparticles. Biosynthesis of nanoparticles using a number of fungi, bacteria, actinomycetes, lichen, and viruses have been reported till date but the plant system has emerged as an efficient system due to its distinctive characters like easy availability, low cost, green approach, simpler downstream processing, etc. In the plant system, biosynthesis process is more useful if nanoparticles are produced extracellularly using plants or their extracts and in a controlled approach related to their size, dispersity, and shape. Plant system can also be suitably scaled up for large-scale synthesis of nanoparticles. However, some aspects like role of different biomolecules in synthesis of nanoparticles, understanding the biological mechanism of synthesis process needs to be considered elaborately. In this chapter, we have discussed briefly about plants as a prominent tool for the synthesis of metal nanoparticles. Moreover, different methods of synthesis of nanoparticles, different mechanisms involved in the synthesis process, and also the potential applications of metal nanoparticles have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI et al (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilicactinomycete Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential applications in vapour sensing. Syn React Inorg Metal-Org Nano-Met Chem 35(1):19–26

    Article  CAS  Google Scholar 

  • Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112:5317–5338

    Article  CAS  PubMed  Google Scholar 

  • Armendariz V, Gardea-Torresdey JL, Herrera I et al (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate chemical elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bankar A, Joshi B, Kumar AR et al (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A 368:58–63

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP et al (2009a) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A 339:134–139

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP et al (2009b) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A 348:212–216

    Article  CAS  Google Scholar 

  • Carlos L, Einschlag FSG, Gonzalez MC et al (2013) Applications of magnetite nanoparticles for heavy metal removal from wastewater. doi:10.5772/54608

    Google Scholar 

  • Chandran SP, Ahmad A, Chaudhary M et al (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Dikpati A, Madgulkar AR, Kshirsagar SJ et al (2012) Targeted drug delivery to CNS using nanoparticles. JAPS J 2(1):179–191

    Google Scholar 

  • Dinesh S, Karthikeyan S, Arumugam P (2012) Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract. Arch Appl Sci Res 4(1):178–187

    Google Scholar 

  • Duran N, Marcato PD, Duran M et al (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Gombez E, Parsons JG et al (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Goldsbrough P (2000) Metal tolerance in plants: the role of phyto-chelatins and metallothioneins. In: Terry N, Banelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishing, Boca Raton, pp 221–234

    Google Scholar 

  • Gopalkrishnan K, Ramesh C, Raghunathan V et al (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Digest J Nanomat Biostruct 7(2):833-839

    Google Scholar 

  • Gupta S, Sharma K, Sharma R (2012) Myconanotechnology and applications of nanoparticles in biology. Recent Res Sci Technol 4(8):36–38

    CAS  Google Scholar 

  • Harris AT, Bali R (2007) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopar Res 11051:9288–9293

    Google Scholar 

  • Haverkamp RG, Marshall AT (2009) The mechanism of nanoparticle formation in plants: limits on accumulation. J Nanopar Res 11:1453–1463

    Article  CAS  Google Scholar 

  • Husseiny MI, AbdEl-Aziz M, Badr Y et al (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67:1003–1006

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Iravani S and Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinuseldarica bark extract. Biomed Res Int Article ID:639725

    Google Scholar 

  • Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1:110–117

    Article  Google Scholar 

  • Jha AJ, Prasad K (2011) Green fruit of chili (Capsicum annum L.) synthesizes nano silver. Digest J Nanomater Biostruct 6:1717–1723

    Google Scholar 

  • Kanchana A, Agarwal I, Sunkar S et al (2011) Biogenic silver nanoparticles from Spinaciaoleracea and Lactuca sativa and their potential antimicrobial activity. Digest J Nanomater Biostruct 6:741–1750

    Google Scholar 

  • Kasthuri J, Kanthiravan K, Rajendiran N (2008) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopar Res 15:1075–1085

    Google Scholar 

  • Kawamura G, Nogami M, Matsuda A (2013) Shape-controlled metal nanoparticles and their assemblies with optical functionalities. J Nanomater Article ID:631350

    Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediaed synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Li S, Qui L, Shen Y, Xie A et al (2007) Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chem 9:852–858

    Google Scholar 

  • Logeshwari P, Silambarasan S, Abraham J (2013) Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica F 20(3):1049–1054

    Google Scholar 

  • Lovley DR, Stolz JF Jr, Nord GL et al (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB et al (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964

    Article  PubMed  Google Scholar 

  • Mallikarjuna K, Narasimha G, Dilip GR et al (2011) Green synthesis of silver nanoparticles using Ocimumleaf extract and their characterization. Digest J Nanomater Biostruct 6(1):181–186

    Google Scholar 

  • Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7:274–282

    Google Scholar 

  • Memon AR, Schröder P (2008) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  Google Scholar 

  • Mude N, Ingle A, Gade A et al (2009) Synthesis of silver nanoparticles by the callus extract of Carica papaya: a first report. Plant Biochem Biotechnol 18:83–86

    Google Scholar 

  • Nagajyothi PC, Lee KD (2011) Synthesis of plant mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J Nanomater Article ID:573429

    Google Scholar 

  • Parashar V, Parashar R, Sharma B et al (2009a) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest J Nanomater Biostruct 4(1):45–50

    Google Scholar 

  • Parashar UK, Saxena PS, Shrivastava A (2009b) Bioinspired synthesis of silver nanoparticles. Digest J Nanomater Biostruct 4(1):159–166

    Google Scholar 

  • Perez-Martinez FC, Carrion B, Cena V (2012) The use of nanoparticles for gene therapy in the nervous system. J Alzheimer’s Dis 31:697–710

    CAS  Google Scholar 

  • Petla RK, Vivekanandhan S, Misra M et al (2012) Soyabean (Gylcine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3:14–19

    Article  CAS  Google Scholar 

  • Rai A, Singh A, Ahmad A et al (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22:736–741

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    Google Scholar 

  • Renugadevi K, Aswini RV (2012) Microwave irradiation assisted synthesis of silver nanoparticles using Azadirachta indica leaf extract as a reducing agent and in vitro evaluation of its antibacterial and anticancer activity. Int J Nanomater Biostruct 2(2):5–10

    Google Scholar 

  • Satyavathi R, Krishna MB, Rao SV et al (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in non-linear optics. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  • Shankar SS, Ahmad A, Rai A et al (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles by using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(5):496–502

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  PubMed  Google Scholar 

  • Singaravelua G, Arockiamaryc JS, Ganesh Kumar V et al (2007) Novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 57:97–101

    Google Scholar 

  • Singh RP, Shukla VK, Yadav RS et al (2011) Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mat Lett 2(4):313–317

    Article  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Toshima N (2013) Metal nanoparticles for energy conversion. Pure Appl Chem 85(2):437–451

    Article  CAS  Google Scholar 

  • Yadav A, Rai M (2011) Bioreduction and mechanistic aspects involved in the synthesis of silver nanoparticles using Holarrhena antidysenterica. J Bionanosci 5:70–73

    Article  CAS  Google Scholar 

  • Zhang X, Yan S, Tyagi RD et al (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(11):489–494

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Duan H, Lu B et al (2013) Electrospinning directly synthesized metal nanoparticles decorated on both sidewalls of TiO2 nanotubes and their applications. Nanoscale 5:5801–5808

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yadav, A., Rai, M. (2015). Phytosynthesis of Metal Nanoparticles. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_12

Download citation

Publish with us

Policies and ethics