Skip to main content

Non-ribosomal Peptides from Entomogenous Fungi

  • Chapter
  • First Online:
Biocontrol of Lepidopteran Pests

Part of the book series: Soil Biology ((SOILBIOL,volume 43))

Abstract

Entomogenous fungi play a very important role in controlling the natural population of insect pests. Many of them have been developing as myco-insecticides. During evolution, entomogenous fungi acquired lots of pathogenic factors against host insects. Non-ribosomal peptide (NRP) is a usual pathogenic factor of entomogenous fungi. Chemically, NRPs are the secondary metabolic compounds mainly composed of specific or modified amino acids and hydroxyl acids. They are synthesized via thiotemplate multienzyme mechanism of multifunctional enzyme complex system other than on ribosome. NRPs show a broad range of biological activities such as insecticide, antibiotic, antivirus, antitumor, etc. Meanwhile, researchers have been focusing their interests on the NRP properties as immunity inhibitor, cell proliferation inhibitor, siderophore and ionophore, etc. To date, more than 20 kinds of NRPs were isolated and identified from entomogenous fungi genera: Beauveria, Conoideocrella, Cordyceps, Culicinomyces, Fusarium, Hirsutella, Isaria, Metarhizium, Paecilomyces, Verticillium, etc. These NRPs include bassianolides, beauvericins, beauverolides, beauveriolides, cicadapeptins, conoideocrellides, cordycommunins, cordyheptapeptides, culicinins, cyclosporins, destruxins, efrapeptins, enniatins, hirsutellides, hirsutides, isariins, isaridins, isarolides, paecilodepsipeptides, serinocyclins, etc. The structures, activity, and mechanism of these NRPs are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiri-Besheli B, Khambay B, Cameron S, Deadman ML, Butt TM (2000) Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycol Res 104:447–452. doi:10.1017/s095375629900146x

    CAS  Google Scholar 

  • Bandani AR (2004) Effect of entomopathogenic fungus Tolypocladium species metabolite efrapeptin on Galleria mellonella agglutinin. Commun Agric Appl Biol Sci 69:165–169

    CAS  PubMed  Google Scholar 

  • Bandani AR, Amiri B, Butt TM, Gordon-Weeks R (2001) Effects of efrapeptin and destruxin, metabolites of entomogenous fungi, on the hydrolytic activity of a vacuolar type ATPase identified on the brush border membrane vesicles of Galleria mellonella midgut and on plant membrane bound hydrolytic enzymes. Biochim Biophys Acta Biomembr 1510:367–377. doi:10.1016/s0005-2736(00)00370-9

    CAS  Google Scholar 

  • Baute R, Deffieux G, Merlet D, Baute MA, Neveu A (1981) New insecticidal cyclodepsipeptides from the fungus Isaria felina. I. Production, isolation and insecticidal properties of isariins B, C and D. J Antibiot 34:1261–1265. doi:10.7164/antibiotics.34.1261

    CAS  PubMed  Google Scholar 

  • Bernardini M, Carilli A, Pacioni G, Santurbano B (1975) Isolation of beauvericin from Paecilomyces fumosoroseus. Phytochemistry 14:1865. doi:10.1016/0031-9422(75)85311-8

    CAS  Google Scholar 

  • Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 14:28–42. doi:10.1002/cbic.201200624

    CAS  PubMed  Google Scholar 

  • Boot CM, Amagata T, Tenney K, Compton JE, Pietraszkiewicz H, Valeriote FA, Crews P (2007) Four classes of structurally unusual peptides from two marine-derived fungi: structures and bioactivities. Tetrahedron 63:9903–9914. doi:10.1016/j.tet.2007.06.034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borel JF, Feurer C, Gubler HU, Staehelin H (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6:468–475. doi:10.1007/bf01973261

    CAS  PubMed  Google Scholar 

  • Briggs LH, Fergus BJ, Shannon JS (1966) Chemistry of fungi. IV. Cyclodepsipeptides from a new species of Isaria. Tetrahedron 22:269–278

    Google Scholar 

  • Brousseau C, Charpentier G, Belloncik S (1996) Susceptibility of spruce budworm, Choristoneura fumiferana Clemens, to destruxins, cyclodepsipeptidic mycotoxins of Metarhizium anisopliae. J Invertebr Pathol 68:180–182. doi:10.1006/jipa.1996.0079

    CAS  Google Scholar 

  • Chen Z, Song Y, Chen Y, Huang H, Zhang W, Ju J (2012) Cyclic heptapeptides, cordyheptapeptides C-E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod 75:1215–1219. doi:10.1021/np300152d

    CAS  PubMed  Google Scholar 

  • Chen XR, Hu QB, Yu XQ, Ren SX (2014) Effects of destruxins on free calcium and hydrogen ions in insect hemocytes. Insect Sci 2:31–38

    Google Scholar 

  • De Zotti M, Biondi B, Crisma M, Hjorringgaard CU, Berg A, Bruckner H, Toniolo C (2012) Isovaline in naturally occurring peptides: a nondestructive methodology for configurational assignment. Biopolymers 98:36–49. doi:10.1002/bip.21679

    PubMed  Google Scholar 

  • Deffieux G, Merlet D, Baute R, Bourgeois G, Baute MA, Neveu A (1981) New insecticidal cyclodepsipeptides from the fungus Isaria felina. II. Structure elucidation of isariins B, C and D. J Antibiot 34:1266–1270. doi:10.7164/antibiotics.34.1266

    CAS  PubMed  Google Scholar 

  • Doebler JA (2000) Effects of neutral ionophores on membrane electrical characteristics of NG108-15 cells. Toxicol Lett 114:27–38. doi:10.1016/s0378-4274(99)00193-9

    CAS  PubMed  Google Scholar 

  • Dreyfuss M, Haerri E, Hofmann H, Kobel H, Pache W, Tscherter H (1976) Cyclosporin A and C. New metabolites from Trichoderma polysporum (Link ex Pers.) Rifai. Eur J Appl Microbiol 3:125–133

    CAS  Google Scholar 

  • Dumas C, Robert P, Pais M, Vey A, Quiot J-M (1994) Insecticidal and cytotoxic effects of natural and hemisynthetic destruxins. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 108:195–203

    CAS  PubMed  Google Scholar 

  • Elsworth JF, Grove JF (1977) Cyclodepsipeptides from Beauveria bassiana Bals. Part 1. Beauverolides H and I. J Chem Soc Perkin Trans 1:270–273

    Google Scholar 

  • Elsworth JF, Grove JF (1980) Cyclodepsipeptides from Beauveria bassiana. Part 2. Beauverolides A to F and their relationship to isarolide. J Chem Soc Perkin Trans 1:1795–1799

    Google Scholar 

  • Fan JQ, Chen XR, Hu QB (2013) Effects of destruxin A on hemocytes morphology of Bombyx mori. J Integr Agric 12:1042–1048. doi:10.1016/s2095-3119(13)60324-x

    Google Scholar 

  • Feudjio FT, Dornetshuber R, Lemmens M, Hoffmann O, Lemmens-Gruber R, Berger W (2010) Beauvericin and enniatin: emerging toxins and/or remedies? World Mycotoxin J 3:415–430. doi:10.3920/wmj2010.1245

    CAS  Google Scholar 

  • Fiolka MJ (2008) Immunosuppressive effect of cyclosporin A on insect humoral immune response. J Invertebr Pathol 98:287–292. doi:10.1016/j.jip.2008.03.015

    CAS  PubMed  Google Scholar 

  • Firakova S, Proksa B, Sturdikova M (2007) Biosynthesis and biological activity of enniatins. Pharmazie 62:563–568. doi:10.1691/ph.2007.8.7600

    CAS  PubMed  Google Scholar 

  • Fornelli F, Minervini F, Logrieco A (2004) Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF-9). J Invertebr Pathol 85:74–79. doi:10.1016/j.jip.2004.01.002

    CAS  PubMed  Google Scholar 

  • Fredenhagen A, Molleyres L-P, Bohlendorf B, Laue G (2006) Structure determination of neoefrapeptins A to N: peptides with insecticidal activity produced by the fungus Geotrichum candidum. J Antibiot 59:267–280. doi:10.1038/ja.2006.38

    CAS  PubMed  Google Scholar 

  • Gaumann E, Roth S, Ettlinger L, Plattner PA, Nager U (1947) Enniatin, a new antibiotic active against Mycobacteria. Experientia 3:202–203

    CAS  PubMed  Google Scholar 

  • Grove JF (1980) Cyclodepsipeptides from Beauveria bassiana. Part 3. The isolation of beauverolides Ba, Ca, Ja, and Ka. J Chem Soc Perkin Trans 1:2878–2880

    Google Scholar 

  • Gupta S, Krasnoff SB, Underwood NL, Renwick JAA, Roberts DW (1991) Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia 115:185–189. doi:10.1007/bf00462223

    CAS  PubMed  Google Scholar 

  • Gupta S, Montllor C, Hwang Y-S (1995) Isolation of novel beauvericin analogs from the fungus Beauveria bassiana. J Nat Prod 58:733–738. doi:10.1021/np50119a012

    CAS  Google Scholar 

  • Hamill RL, Higgens CE, Boaz HE, Gorman M (1969) Structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 49:4255–4258

    CAS  Google Scholar 

  • Haritakun R, Sappan M, Suvannakad R, Tasanathai K, Isaka M (2010) An antimycobacterial cyclodepsipeptide from the entomopathogenic fungus Ophiocordyceps communis BCC 16475. J Nat Prod 73:75–78. doi:10.1021/np900520b

    CAS  PubMed  Google Scholar 

  • Hayakawa Y, Hattori Y, Kawasaki T, Kanoh K, Adachi K, Shizuri Y, Shin-ya K (2008) Efrapeptin J, a new down-regulator of the molecular chaperone GRP78 from a marine Tolypocladium sp. J Antibiot 61:365–371. doi:10.1038/ja.2008.51

    CAS  PubMed  Google Scholar 

  • He H, Janso JE, Yang HY, Bernan VS, Lin SL, Yu K (2006) Culicinin D, an antitumor peptaibol produced by the fungus Culicinomyces clavisporus, strain LL-12I252. J Nat Prod 69:736–741. doi:10.1021/np058133r

    CAS  PubMed  Google Scholar 

  • Herrmann M, Zocher R, Haese A (1996) Enniatin production by Fusarium strains and its effect on potato tuber tissue. Appl Environ Microbiol 62:393–398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hiraga K, Yamamoto S, Fukuda H, Hamanaka N, Oda K (2005) Enniatin has a new function as an inhibitor of Pdr5p, one of the ABC transporters in Saccharomyces cerevisiae. Biochem Biophys Res Commun 328:1119–1125

    CAS  PubMed  Google Scholar 

  • Hu QB, Ren SX, Liu SY (2007a) Purification of destruxins produced by Metarhizium anisopliae and bioassay of their insecticidal activities against grubs. Kunchong Xuebao 50:461–466

    CAS  Google Scholar 

  • Hu QB, Ren SX, An XC, Qian MH (2007b) Insecticidal activity influence of destruxins on the pathogenicity of Paecilomyces javanicus against Spodoptera litura. J Appl Entomol 131:262–268. doi:10.1111/j.1439-0418.2007.01159.x

    CAS  Google Scholar 

  • Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 29:1074–1098. doi:10.1039/c2np20025b

    CAS  PubMed  Google Scholar 

  • Isaka M, Palasarn S, Kocharin K, Hywel-Jones NL (2007a) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus and teleomorph Torrubiella luteorostrata. J Antibiot 60:577–581. doi:10.1038/ja.2007.73

    CAS  PubMed  Google Scholar 

  • Isaka M, Palasarn S, Lapanun S, Sriklung K (2007b) Paecilodepsipeptide A, an antimalarial and antitumor cyclohexadepsipeptide from the insect pathogenic fungus Paecilomyces cinnamomeus BCC 9616. J Nat Prod 70:675–678. doi:10.1021/np060602h

    CAS  PubMed  Google Scholar 

  • Isaka M, Srisanoh U, Lartpornmatulee N, Boonruangprapa T (2007c) ES-242 derivatives and cycloheptapeptides from Cordyceps sp. strains BCC 16173 and BCC 16176. J Nat Prod 70:1601–1604. doi:10.1021/np070357h

    CAS  PubMed  Google Scholar 

  • Isaka M, Palasarn S, Supothina S, Komwijit S, Luangsa-ard JJ (2011) Bioactive compounds from the scale insect pathogenic fungus Conoideocrella tenuis BCC 18627. J Nat Prod 74:782–789. doi:10.1021/np100849x

    CAS  PubMed  Google Scholar 

  • Jackson CG, Linnett PE, Beechey RB, Henderson PJF (1979) Purification and preliminary structure analysis of the efrapeptins, a group of antibiotics that inhibit the mitochondrial adenosine triphosphatase. Biochem Soc Trans 7:224–226

    CAS  PubMed  Google Scholar 

  • Jegorov A, Matha V, Weiser J (1990) Production of cyclosporins by entomopathogenic fungi. Microbios Lett 45:65–69

    CAS  Google Scholar 

  • Jegorov A, Matha V, Hradec H (1992) Detoxification of destruxins in Galleria mellonella L. larvae. Comp Biochem Physiol C 103:227–229

    Google Scholar 

  • Jegorov A, Sedmera P, Matha V, Simek P, Zahradnickova H, Landa Z, Eyal J (1994) Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry 37:1301–1303

    CAS  PubMed  Google Scholar 

  • Jestoi M, Rokka M, Peltonen K (2007) An integrated sample preparation to determine coccidiostats and emerging Fusarium-mycotoxins in various poultry tissues with LC-MS/MS. Mol Nutr Food Res 51:625–637. doi:10.1002/mnfr.200600232

    CAS  PubMed  Google Scholar 

  • Juan C, Raiola A, Manes J, Ritieni A (2014) Presence of mycotoxin in commercial infant formulas and baby foods from Italian market. Food Control 39:227–236. doi:10.1016/j.foodcont.2013.10.036

    CAS  Google Scholar 

  • Kallen J, Spitzfaden C, Zurini MGM, Wider G, Widmer H, Wuthrich K, Walkinshaw MD (1991) Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature 353:276–279

    CAS  PubMed  Google Scholar 

  • Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Suzuki A, Tamura S (1978) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agric Biol Chem 42:629–635. doi:10.1271/bbb1961.42.629

    CAS  Google Scholar 

  • Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invertebr Pathol 74:213–223. doi:10.1006/jipa.1999.4884

    CAS  PubMed  Google Scholar 

  • Kodaira Y (1961) Toxic substances to insects, produced by Aspergillus ochraceus and Oospora destructor. Agric Biol Chem 25:261–262. doi:10.1271/bbb1961.25.261

    CAS  Google Scholar 

  • Kodaira Y (1962) Studies on the new toxic substances to insects, destruxin A and B, produced by Oospora destructor. I. Isolation and purification of destruxin A and B. Agric Biol Chem 26:36–42. doi:10.1271/bbb1961.26.36

    CAS  Google Scholar 

  • Kovarik J (2013) From immunosuppression to immunomodulation: current principles and future strategies. Pathobiology 80:275–281. doi:10.1159/000346960

    CAS  PubMed  Google Scholar 

  • Krasnoff SB, Gupta S (1991) Identification and directed biosynthesis of efrapeptins in the fungus Tolypocladium geodes Gams (Deuteromycotina: Hyphomycetes). J Chem Ecol 17:1953–1962. doi:10.1007/bf00992580

    CAS  PubMed  Google Scholar 

  • Krasnoff SB, Gupta S, St. Leger RJ, Renwick JAA, Roberts DW (1991) Antifungal and insecticidal properties of the efrapeptins: metabolites of the fungus Tolypocladium niveum. J Invertebr Pathol 58:180–188. doi:10.1016/0022-2011(91)90062-u

    CAS  Google Scholar 

  • Krasnoff SB, Reategui RF, Wagenaar MM, Gloer JB, Gibson DM (2005) Cicadapeptins I and II: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 68:50–55. doi:10.1021/np0497189

    CAS  PubMed  Google Scholar 

  • Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Churchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924. doi:10.1021/np070407i

    CAS  PubMed  Google Scholar 

  • Lang G, Blunt JW, Cummings NJ, Cole ALJ, Munro MHG (2005) Hirsutide, a cyclic tetrapeptide from a spider-derived entomopathogenic fungus, Hirsutella sp. J Nat Prod 68:1303–1305. doi:10.1021/np0501536

    CAS  PubMed  Google Scholar 

  • Langenfeld A, Blond A, Gueye S, Herson P, Nay B, Dupont J, Prado S (2011) Insecticidal cyclodepsipeptides from Beauveria felina. J Nat Prod 74:825–830. doi:10.1021/np100890n

    CAS  PubMed  Google Scholar 

  • Lardy H, Reed P, Lin C-HC (1975) Antibiotic inhibitors of mitochondrial ATP synthesis. Fed Proc Fed Am Soc Exp Biol 34:1707–1710

    CAS  Google Scholar 

  • Levy D, Bluzat A, Seigneuret M, Rigaud J-L (1995) Alkali cation transport through liposomes by the antimicrobial fusafungine and its constitutive enniatins. Biochem Pharmacol 50:2105–2107. doi:10.1016/0006-2952(95)02045-4

    CAS  PubMed  Google Scholar 

  • Liu B-L, Tzeng Y-M (2012) Development and applications of destruxins: a review. Biotechnol Adv 30:1242–1254. doi:10.1016/j.biotechadv.2011.10.006

    CAS  PubMed  Google Scholar 

  • Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    CAS  PubMed  Google Scholar 

  • Luciano FB, Meca G, Manyes L, Manes J (2014) A chemical approach for the reduction of beauvericin in a solution model and in food systems. Food Chem Toxicol 64:270–274. doi:10.1016/j.fct.2013.11.021

    CAS  PubMed  Google Scholar 

  • Makrlik E, Toman P, Vanura P (2013a) Complexation of Pb2+ with beauvericin: an experimental and theoretical study. Monatsh Chem 144:1461–1465. doi:10.1007/s00706-013-1054-z

    CAS  Google Scholar 

  • Makrlik E, Toman P, Vanura P (2013b) Experimental and DFT study on the complexation of Ba2+ with beauvericin. J Radioanal Nucl Chem 295:1887–1891. doi:10.1007/s10967-012-2107-1

    CAS  Google Scholar 

  • Makrlik E, Toman P, Vanura P (2013c) Experimental and theoretical study on the complexation of Ca2+ with beauvericin. J Radioanal Nucl Chem 298:195–200. doi:10.1007/s10967-012-2335-4

    CAS  Google Scholar 

  • Makrlik E, Toman P, Vanura P (2013d) Extraction and DFT study on the complexation of Zn2+ with beauvericin. Acta Chim Slov 60:884–888

    CAS  PubMed  Google Scholar 

  • Matsuda D, Namatame I, Tomoda H, Kobayashi S, Zocher R, Kleinkauf H, Omura S (2004) New beauveriolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979. J Antibiot 57:1–9. doi:10.7164/antibiotics.57.1

    CAS  PubMed  Google Scholar 

  • Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama S, Miyoshi E, Yamamura S (1993a) The structures of bioactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull Chem Soc Jpn 66:3041–3046. doi:10.1246/bcsj.66.3041

    CAS  Google Scholar 

  • Mochizuki K, Ohomori K, Tamura H, Shizuri Y, Nishiyama S, Miyoshi E, Yamamura S (1993b) The structures of bioactive cyclodepsipeptides, Beauveriollides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull Chem Soc Jpn 66:3041–3046

    CAS  Google Scholar 

  • Molleyres L-P, Fredenhagen A, Schuez TC, Boehlendorf B, Neff S, Huang Y (2004) Production of neoefrapeptins for use as insecticides. DE10361201A1

    Google Scholar 

  • Momose I, Ohba S-i, Tatsuda D, Kawada M, Masuda T, Tsujiuchi G, Yamori T, Esumi H, Ikeda D (2010) Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions. Biochem Biophys Res Commun 392:460–466. doi:10.1016/j.bbrc.2010.01.050

    CAS  PubMed  Google Scholar 

  • Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui R, Omura S (2006) Verticilide: elucidation of absolute configuration and total synthesis. Org Lett 8:5601–5604. doi:10.1021/ol0623365

    CAS  PubMed  Google Scholar 

  • Moretti A, Mule G, Ritieni A, Logrieco A (2007) Further data on the production of beauvericin, enniatins and fusaproliferin and toxicity to Artemia salina by Fusarium species of Gibberella fujikuroi species complex. Int J Food Microbiol 118:158–163. doi:10.1016/j.ijfoodmicro.2007.07.004

    CAS  PubMed  Google Scholar 

  • Muellenhoff MW, Koo JY (2012) Cyclosporine and skin cancer: an international dermatologic perspective over 25 years of experience. A comprehensive review and pursuit to define safe use of cyclosporine in dermatology. J Dermatol Treat 23:290–304. doi:10.3109/09546634.2011.590792

    CAS  Google Scholar 

  • Mule G, D'Ambrosio A, Logrieco A, Bottalico A (1992) Toxicity of mycotoxins of Fusarium sambucinum for feeding in Galleria mellonella. Entomol Exp Appl 62:17–22. doi:10.1111/j.1570-7458.1992.tb00636.x

    CAS  Google Scholar 

  • Nagaoka Y, Hata K, Fukata N, Uesato S, Ueda J, Higashi K, Uchida S, Fujita T, Sasaki S, Tachikawa E (2006) Cicadapeptins from a fungus Isaria sinclairii inhibit acetylcholine-evoked secretion of catecholamines from bovine adrenal chromaffin cells. Pept Sci 43:248

    Google Scholar 

  • Nakajyo S, Shimizu K, Kometani A, Kato K, Kamizaki J, Isogai A, Urakawa N (1982) Inhibitory effect of bassianolide, a cyclodepsipeptide, on drug-induced contractions of isolated smooth muscle preparations. Jpn J Pharmacol 32:55–64. doi:10.1254/jjp.32.55

    CAS  PubMed  Google Scholar 

  • Nakajyo S, Shimizu K, Kometani A, Suzuki A, Ozaki H, Urakawa N (1983) On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in guinea-pig taenia coli. Jpn J Pharmacol 33:573–582. doi:10.1254/jjp.33.573

    CAS  PubMed  Google Scholar 

  • Nakaya S, Mizuno S, Ishigami H, Yamakawa Y, Kawagishi H, Ushimaru T (2012) New rapid screening method for anti-aging compounds using budding yeast and identification of beauveriolide I as a potent active compound. Biosci Biotechnol Biochem 76:1226–1228. doi:10.1271/bbb.110872

    CAS  PubMed  Google Scholar 

  • Namatame I, Tomoda H, Ishibashi S, Omura S (2004) Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages. Proc Natl Acad Sci U S A 101:737–742. doi:10.1073/pnas.0307757100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohshiro T, Matsuda D, Nagai K, Doi T, Sunazuka T, Takahashi T, Rudel LL, Omura S, Tomoda H (2009) The selectivity of beauveriolide derivatives in inhibition toward the two isozymes of acyl-CoA: cholesterol acyltransferase. Chem Pharm Bull 57:377–381. doi:10.1248/cpb.57.377

    CAS  PubMed  Google Scholar 

  • Ohshiro T, Matsuda D, Kazuhiro T, Uchida R, Nonaka K, Masuma R, Tomoda H (2012) New verticilides, inhibitors of acyl-CoA:cholesterol acyltransferase, produced by Verticillium sp. FKI-2679. J Antibiot (Tokyo) 65:255–262. doi:ja201212 [pii]10.1038/ja.2012.12 [doi]

    Google Scholar 

  • Ohyama M, Okada Y, Takahashi M, Sakanaka O, Matsumoto M, Atsumi K (2011) Structure-activity relationship of anthelmintic cyclooctadepsipeptides. Biosci Biotechnol Biochem 75:1354–1363. doi:10.1271/bbb.110129

    CAS  PubMed  Google Scholar 

  • Omura S, Tomoda H (2002) Selection culture media for beauveriolide I or beauveriolide III manufacture with Beauveria. WO2002077203A1

    Google Scholar 

  • Omura S, Shiomi K, Masuma R (2004) Novel substance FKI-1033 manufacture with Verticillium as insecticide. WO2004044214A1

    Google Scholar 

  • Pal S, St. Leger RJ, Wu LP (2007) Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem 282:8969–8977

    CAS  PubMed  Google Scholar 

  • Papathanassiu AE, MacDonald NJ, Bencsura A, Vu HA (2006) F1F0-ATP synthase functions as a co-chaperone of Hsp90-substrate protein complexes. Biochem Biophys Res Commun 345:419–429. doi:10.1016/j.bbrc.2006.04.104

    CAS  PubMed  Google Scholar 

  • Papathanassiu AE, MacDonald NJ, Emlet DR, Vu HA (2011) Antitumor activity of efrapeptins, alone or in combination with 2-deoxyglucose, in breast cancer in vitro and in vivo. Cell Stress Chaperones 16:181–193. doi:10.1007/s12192-010-0231-9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pedras MSC, Irina Zaharia L, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596. doi:10.1016/s0031-9422(02)00016-x

    CAS  PubMed  Google Scholar 

  • Plattner RD, Nelson PE (1994) Production of beauvericin by a strain of Fusarium proliferatum isolated from corn fodder for swine. Appl Environ Microbiol 60:3894–3896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Podsiadlowski L, Matha V, Vilcinskas A (1998) Detection of a P-glycoprotein related pump in Chironomus larvae and its inhibition by verapamil and cyclosporin A. Comp Biochem Phys B 121:443–450

    CAS  Google Scholar 

  • Prosperini A, Juan-Garcia A, Font G, Ruiz MJ (2013) Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells. Toxicol Lett 222:204–211. doi:10.1016/j.toxlet.2013.07.005

    CAS  PubMed  Google Scholar 

  • Putri SP, Ishido K-i, Kinoshita H, Kitani S, Ihara F, Sakihama Y, Igarashi Y, Nihira T (2013) Production of antioomycete compounds active against the phytopathogens Phytophthora sojae and Aphanomyces cochlioides by clavicipitoid entomopathogenic fungi. J Biosci Bioeng. doi:10.1016/j.jbiosc.2013.10.014

    Google Scholar 

  • Ravindra G, Ranganayaki RS, Raghothama S, Srinivasan MC, Gilardi RD, Karle IL, Balaram P (2004) Two novel hexadepsipeptides with several modified amino acid residues isolated from the fungus Isaria. Chem Biodivers 1:489–504. doi:10.1002/cbdv.200490043

    CAS  PubMed  Google Scholar 

  • Rivas F, Howell G, Floyd Z (2008) Orgn 441- Progress toward the synthesis of two antibacterial heptapeptides: Cicadapeptins I and II. Abstracts of papers of the American Chemical Society, 236th National meeting of the American-Chemical-Society, Philadelphia

    Google Scholar 

  • Rizwan-Ul-Haq M, Hu QB, Hu MY, Zhong G, Weng Q (2009) Study of destruxin B and tea saponin, their interaction and synergism activities with Bacillus thuringiensis kurstaki against Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Entomol Zool 44:419–428. doi:10.1303/aez.2009.419

    CAS  Google Scholar 

  • Ruiz-Sanchez E, O'Donnell MJ (2012) Effects of the microbial metabolite destruxin a on ion transport by the gut and renal epithelia of Drosophila melanogaster. Arch Insect Biochem Physiol 80:109–122. doi:10.1002/arch.21023

    CAS  PubMed  Google Scholar 

  • Ruiz-Sanchez E, Orchard I, Lange AB (2010) Effects of the cyclopeptide mycotoxin destruxin A on the Malpighian tubules of Rhodnius prolixus (Stal). Toxicon 55:1162–1170. doi:10.1016/j.toxicon.2010.01.006

    CAS  PubMed  Google Scholar 

  • Rukachaisirikul V, Chantaruk S, Tansakul C, Saithong S, Chaicharernwimonkoon L, Pakawatchai C, Isaka M, Intereya K (2006) A cyclopeptide from the insect pathogenic fungus Cordyceps sp. BCC 1788. J Nat Prod 69:305–307. doi:10.1021/np050433l

    CAS  PubMed  Google Scholar 

  • Ryffel B, Donatsch P, Goetz U, Tschopp M (1980) Cyclosporin receptor on mouse lymphocytes. Immunology 41:913–919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sabareesh V, Ranganayaki RS, Raghothama S, Bopanna MP, Balaram H, Srinivasan MC, Balaram P (2007) Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. J Nat Prod 70:715–729. doi:10.1021/np060532e

    CAS  PubMed  Google Scholar 

  • Santini A, Meca G, Uhlig S, Ritieni A (2012) Fusaproliferin, beauvericin and enniatins: occurrence in food – a review. World Mycotoxin J 5:71–81. doi:10.3920/wmj2011.1331

    CAS  Google Scholar 

  • Shiomi K, Matsui R, Kakei A, Yamaguchi Y, Masuma R, Hatano H, Arai N, Isozaki M, Tanaka H, Kobayashi S, Turberg A, Omura S (2010) Verticilide, a new ryanodine-binding inhibitor, produced by Verticillium sp. FKI-1033. J Antibiot (Tokyo) 63:77–82. doi:ja2009126 [pii]10.1038/ja.2009.126 [doi]

    Google Scholar 

  • Sree KS, Padmaja V (2008) Oxidative stress induced by destruxin from Metarhizium anisopliae (Metch.) involves changes in glutathione and ascorbate metabolism and instigates ultrastructural changes in the salivary glands of Spodoptera litura (Fab.) larvae. Toxicon 51:1140–1150. doi:10.1016/j.toxicon.2008.01.012

    CAS  Google Scholar 

  • Steinrauf LK (1985) Beauvericin and the other enniatins. Met Ions Biol Syst 19:139–171

    CAS  Google Scholar 

  • Strongman DB, Strunz GM, Giguere P, Yu CM, Calhoun L (1988) Enniatins from Fusarium avenaceum isolated from balsam fir foliage and their toxicity to spruce budworm larvae, Choristoneura fumiferana (Clem.) (Lepidoptera: tortricidae). J Chem Ecol 14:753–764. doi:10.1007/bf01018770

    CAS  PubMed  Google Scholar 

  • Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738

    CAS  PubMed  Google Scholar 

  • Suzuki A, Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Tamura S (1977) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 18:2167–2170. doi:10.1016/s0040-4039(01)83709-6

    Google Scholar 

  • Sy-Cordero AA, Pearce CJ, Oberlies NH (2012) Revisiting the enniatins: a review of their isolation, biosynthesis, structure determination and biological activities. J Antibiot 65:541–549. doi:10.1038/ja.2012.71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomoda H, Omura S (2007) Potential therapeutics for obesity and atherosclerosis: inhibitors of neutral lipid metabolism from microorganisms. Pharmacol Ther 115:375–389. doi:10.1016/j.pharmthera.2007.05.008

    CAS  PubMed  Google Scholar 

  • Tomoda H, Huang XH, Cao J, Nishida H, Nagao R, Okuda S, Tanaka H, Omura S, Arai H, Inoue K (1992) Inhibition of acyl-CoA: cholesterol acyltransferase activity by cyclodepsipeptide antibiotics. J Antibiot 45:1626–1632. doi:10.7164/antibiotics.45.1626

    CAS  PubMed  Google Scholar 

  • Tomoda H, Omura S, Takahashi T, Doi T, Hijikuro I, Imuta S, Matsuda D, Oki T (2010) Beauveriolide having ACAT-2 inhibitory activity. JP2010126454A

    Google Scholar 

  • Vaclavik L, Vaclavikova M, Begley TH, Krynitsky AJ, Rader JI (2013) Determination of multiple mycotoxins in dietary supplements containing green coffee bean extracts using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). J Agric Food Chem 61:4822–4830. doi:10.1021/jf401139u

    CAS  PubMed  Google Scholar 

  • Vazquez MJ, Albarran MI, Espada A, Rivera-Sagredo A, Diez E, Hueso-Rodriguez JA (2005) A new destruxin as inhibitor of vacuolar-type H+-ATPase of Saccharomyces cerevisiae. Chem Biodivers 2:123–130

    CAS  PubMed  Google Scholar 

  • Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect hemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invertebr Pathol 80:177–187. doi:10.1016/s0022-2011(02)00104-0

    CAS  PubMed  Google Scholar 

  • Vilcinskas A, Matha V, Gotz P (1997a) Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. J Insect Physiol 43:1149–1159. doi:10.1016/s0022-1910(97)00066-8

    CAS  PubMed  Google Scholar 

  • Vilcinskas A, Matha V, Gotz P (1997b) Inhibition of phagocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites. J Insect Physiol 43:475–483. doi:10.1016/s0022-1910(96)00120-5

    CAS  Google Scholar 

  • Vilcinskas A, Jegorov A, Landa Z, Goatz P, Matha V (1999) Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp Biochem Physiol C 122:83–92

    CAS  PubMed  Google Scholar 

  • Vining LC, Taber WA (1962) Isariin, a new depsipeptide from Isaria cretacea. Can J Chem 40:1579–1584. doi:10.1139/v62-239

    CAS  Google Scholar 

  • Vongvanich N, Kittakoop P, Isaka M, Trakulnaleamsai S, Vimuttipong S, Tanticharoen M, Thebtaranonth Y (2002) Hirsutellide A, a new antimycobacterial cyclohexadepsipeptide from the entomopathogenic fungus Hirsutella kobayasii. J Nat Prod 65:1346–1348. doi:10.1021/np020055+

    CAS  PubMed  Google Scholar 

  • Wang Q, Xu L (2012) Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367–2377. doi:10.3390/molecules17032367

    CAS  PubMed  Google Scholar 

  • Weigelt S, Huber T, Hofmann F, Jost M, Ritzefeld M, Luy B, Freudenberger C, Majer Z, Vass E, Greie J-C, Panella L, Kaptein B, Broxterman QB, Kessler H, Altendorf K, Hollosi M, Sewald N (2012) Synthesis and conformational analysis of efrapeptins. Chemistry 18:478–487

    CAS  PubMed  Google Scholar 

  • Weiser J, Matha V (1988) The insecticidal activity of cyclosporines on mosquito larvae. J Invertebr Pathol 51:92–93. doi:10.1016/0022-2011(88)90092-4

    CAS  PubMed  Google Scholar 

  • Wiesinger D, Borel JF (1980) Studies on the mechanism of action of cyclosporin A. Immunobiology (Stuttgart) 156:454–463. doi:10.1016/s0171-2985(80)80078-7

    CAS  Google Scholar 

  • Witter DP, Chen Y, Rogel JK, Boldt GE, Wentworth P Jr (2009) The natural products Beauveriolide I and III: a new class of β-amyloid-lowering compounds. Chembiochem 10:1344–1347. doi:10.1002/cbic.200900139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y, Zhan J, Wijeratne EMK, Burns AM, Gunatilaka AAL, Molnar I (2007) Cytotoxic and antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159. J Nat Prod 70:1467–1471. doi:10.1021/np070262f

    CAS  PubMed  Google Scholar 

  • Xu Y, Rozco R, Wijeratne EMK, Espinosa-Artiles P, Gunatilaka AAL, Stock SP, Molnar I (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet Biol 46:353–364. doi:10.1016/j.fgb.2009.03.001

    CAS  PubMed  Google Scholar 

  • Yang M, Wang Y, Liu X, Wu J (2013) Synthesis and anti-tumor activity of cyclodepsipeptides paecilodepsipeptide A. Adv Mater Res 643:92–95. doi:10.4028/www.scientific.net/AMR.643.92

    Google Scholar 

  • Yi F, Zou C, Hu Q, Hu M (2012) The joint action of destruxins and botanical insecticides (rotenone, azadirachtin and paeonolum) against the cotton aphid, Aphis gossypii Glover. Molecules 17:7533–7542. doi:10.3390/molecules17067533

    CAS  PubMed  Google Scholar 

  • Yu D, Xu F, Gage D, Zhan J (2013a) Functional dissection and module swapping of fungal cyclooligomer depsipeptide synthetases. Chem Commun 49:6176–6178. doi:10.1039/c3cc42425a

    CAS  Google Scholar 

  • Yu D, Xu F, Zi J, Wang S, Gage D, Zeng J, Zhan J (2013b) Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomyces cerevisiae. Metab Eng 18:60–68. doi:10.1016/j.ymben.2013.04.001

    CAS  PubMed  Google Scholar 

  • Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C, Sun H, Chen Z, Sun N, An R, Min F, Zhao W, Zhuo Y, You J, Song Y, Yu Z, Liu Z, Yang K, Gao H, Dai H, Zhang X, Wang J, Fu C, Pei G, Liu J, Si Z, Goodfellow M, Jiang Y, Kuai J, Zhou G, Chen X (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci U S A 104:4606–4611. doi:10.1073/pnas.0609370104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W, Sun TT, Mei D, Wang JF, Li YX (2008) Synthesis of protected (2S,4R)-2-amino-4-methyldecanoic acid, a proposed component of culicinins. Chin Chem Lett 19:1068–1070. doi:10.1016/j.cclet.2008.06.027

    CAS  Google Scholar 

  • Zhang W, Sun T-T, Li Y-X (2009) Synthesis of the C-terminal pentapeptide of the peptaibol culicinins. J Pept Sci 15:366–368. doi:10.1002/psc.1124

    CAS  PubMed  Google Scholar 

  • Zhang W, Ding N, Li Y (2011) An improved synthesis of (2S,4S)- and (2S,4R)-2-amino-4-methyldecanoic acids: assignment of the stereochemistry of culicinins. J Pept Sci 17:576–580. doi:10.1002/psc.1376

    CAS  PubMed  Google Scholar 

  • Zhang D, Li S, Lu R, Li K, Luo F, Peng F, Hu F (2012) Influence of incubation time on metabolites in mycelia of Paecilomyces militaris. Weishengwu Xuebao 52:1477–1488

    CAS  Google Scholar 

Download references

Acknowledgements

The authors cordially thank Dr. Zhou Zuoqiang and his MS student Liu Kai (College of Science, South China Agricultural University) for checking the chemical structures of NRPs. Ms. Chen Xiurun partly contributes to this MS. This research is supported by the National High-Technology Research and Development Program (“863” Program) of China (2011AA10A204-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiongbo Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hu, Q., Dong, T. (2015). Non-ribosomal Peptides from Entomogenous Fungi. In: Sree, K., Varma, A. (eds) Biocontrol of Lepidopteran Pests. Soil Biology, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-14499-3_8

Download citation

Publish with us

Policies and ethics