Skip to main content

Bt Insecticidal Crystal Proteins: Role in Insect Management and Crop Improvement

  • Chapter
  • First Online:
Biocontrol of Lepidopteran Pests

Part of the book series: Soil Biology ((SOILBIOL,volume 43))

Abstract

Insect pests are one of the major constraints that crops face during their growth period. Management of these insect pests has been prioritised since time immemorial. The insecticidal crystal proteins produced by Bacillus thuringiensis offer tangible options for insect management. They have not only been effective as biopesticides but also proved to be successful in plant biotechnology. A plethora of cry genes have been identified and used for the development of various transgenic crops of economic importance against insect pest. The success of Bt cotton globally demonstrates the utility of these genes in crop improvement programmes. This chapter describes the enormous information available on the various types and classes of cry genes and their mode of action on insects for the development of pest-resistant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barton KA, Whiteley HR, Yang NS (1987) Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    Article  CAS  PubMed  Google Scholar 

  • Bauce E, Carisey N, Dupont A, van Frankenhuyzen K (2004) Bacillus thuringiensis subsp kurstaki (Btk) aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Tortricidae). J Econ Entomol 97:1624–1634

    Article  PubMed  Google Scholar 

  • Baum JA, Johnson TB, Carlton BC (1999) Bacillus thuringiensis: natural and recombinant bioinsecticide products. In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery. Humana Press, Totowa, pp 189–210

    Google Scholar 

  • Beard CE, Court L, Mourant RG, James B, Van Rie J, Masson L, Akhurst RJ (2008) Use of a cry1Ac-resistant line of Helicoverpa armigera (Lepidoptera: Noctuidae) to detect novel insecticidal toxin genes in Bacillus thuringiensis. Curr Microbiol 57:175–180

    Article  CAS  PubMed  Google Scholar 

  • Becker N (2000) Bacterial control of vector-mosquitoes and black flies. In: Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic, Dordrecht, pp 383–396

    Google Scholar 

  • Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382

    Article  CAS  PubMed  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-Å resolution. J Bacteriol 188:3391–3401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bravo A (1997) Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. J Bacteriol 179:2793–2801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103:15196–15199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2013) GM crops: global socio-economic and environmental impacts 1996–2011. PG Economics Ltd, Dorchester

    Google Scholar 

  • Carlton BC, Gawron-Burke C (1993) Genetic improvement of Bacillus thuringiensis for bioinsecticide development. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, New York, pp 43–61

    Google Scholar 

  • Carlton ΒC, Gonzalez JΝ (1985) Plasmids and delta-endotoxin production in different subspecies of Bacillus thuringiensis. In: Hoch JA, Setlow P (eds) Molecular biology of microbial differentiation. American Society for Microbiology, Washington, DC, pp 246–252

    Google Scholar 

  • Carroll J, Ellar DJ (1993) An analysis of Bacillus thuringiensis δ-endotoxin action on insect-midgut-membrane permeability using a light scattering assay. Eur J Biochem 214:771–778

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Barjac H, Bonnefoi A (1962) Essai de classiffication biochimique et serologique de 24 souches de Bacillus du type B. thuringiensis. Entomophaga 7:5–31

    Article  Google Scholar 

  • De Maagd RA, Bakkar PL, Masson L, Adang MJ, Sangandala S, Stiekema W, Bosch D (1999) Domain III of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified amino peptidase N. Mol Microbiol 31:463–471

    Article  PubMed  Google Scholar 

  • English L, Slatin SL (1992) Mini-review. Mode of action of Delta-endotoxins from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem Mol Biol 22:1–7

    Article  CAS  Google Scholar 

  • Federici BA (1999) Bacillus thuringiensis in biological control. In: Bellows TS, Fisher TW (eds) Handbook of biological control: principles and applications, Chapter 21. Academic, San Diego, pp 575–593

    Google Scholar 

  • Fernández-Larrea O (2002) Tecnologías de producción de Bacillus thuringiensis. Manejo Integrado de Plagas y Agroecología 64:110–115

    Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCoormick SM, Niedermeyer JG, Dean DA, Kusano KK, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Biotechnology 5:807–813

    Article  CAS  Google Scholar 

  • Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial δ-endotoxin CryBb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr D 57:1101–1109

    Article  CAS  Google Scholar 

  • Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JM, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci USA 79:6951–6955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler MJ (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. Mol Biol 254:447–464

    Article  CAS  Google Scholar 

  • Guillet P, Kurtak DC, Philippon B, Meyer R (1990) Use of Bacillus thuringiensis israelensis for Onchocerciasis control in West Africa. In: de Barjac H, Sutherland D (eds) Bacterial control of mosquitoes and black flies: biochemistry, genetics, and applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Rutgers Univ. Press, New Brunswick, pp 187–201

    Chapter  Google Scholar 

  • Hendrickx ME, Estrada-Navarrete FD (1989) A checklist of the species of pelagic shrimps (Penaeoidea and Caridea) from the eastern Pacific with notes on their zoogeography and depth distribution. CalCoFi Rep 30:104–111

    Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang F, Leonard BR, Andow DA (2007) Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. J Econ Entomol 100:164–171

    Article  PubMed  Google Scholar 

  • James C (2012) Global status of commercialised biotech D GM Crops: 2012. ISAAA Brief 44. ISAAA, Ithaca

    Google Scholar 

  • Jenkins JL, Dean DH (2000) Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. In: Setlow JK (ed) Genetic engineering: principles and methods. Plenum, New York, p 33

    Chapter  Google Scholar 

  • Jenkins JL, Lee MK, Valaitis AP, Curtiss A, Dean DH (2000) Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. J Biol Chem 275:14423–14431

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Adang MJ (2004) Characterization of a Cry1Ac-receptor alkaline phosphatase susceptible and resistant Heliothis virescens larvae. Eur J Biochem 271:3127–3135

    Article  CAS  PubMed  Google Scholar 

  • Kaur S (2000) Molecular approaches towards development of novel Bacillus thuringiensis biopesticides. World J Microbiol Biotechnol 16:781–793

    Article  CAS  Google Scholar 

  • Knight P, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–436

    Article  CAS  PubMed  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis Insecticidal d-endotoxins. Adv Insect Physiol 4:275–308

    Google Scholar 

  • Knowles BH, Dow JAT (1993) The crystal d-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut. Bioessays 15:469–476

    Article  CAS  Google Scholar 

  • Koller CN, Bauer LS, Hollingworth RM (1992) Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native delta endotoxin crystals. Biochem Biophys Res Commun 184:692–699

    Article  CAS  PubMed  Google Scholar 

  • Kronstad J, Schnepf WHE, Whiteley HR (1983) Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol 154:419–428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal d-endotoxin from Bacillus thuringiensis at 2.5 Å resolutions. Nature 353:815–821

    Article  CAS  PubMed  Google Scholar 

  • Luthy P, Cordier JL, Fischer HM (1982) Bacillus thuringiensis as a bacterial insecticide: basic considerations and application. In: Kurstak E (ed) Microbial and viral pesticides. Marcel Dekker, New York/Basel, pp 35–74

    Google Scholar 

  • McNall RJ, Adang MJ (2003) Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol 33:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9:409–417

    Article  CAS  PubMed  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong RL, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnology 8:939–943

    Article  CAS  PubMed  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321

    Article  CAS  PubMed  Google Scholar 

  • Porcar M, Caballero P (2000) Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. J Appl Microbiol 89:309–316

    Article  CAS  PubMed  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299:900–902

    Article  CAS  PubMed  Google Scholar 

  • Rowe GE, Margaritis A (1987) Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. CRC Crit Rev Biotechnol 6:87–127

    Article  CAS  Google Scholar 

  • Sacchi VF, Parenti P, Hanozet GM, Giordana B, Luethy P, Wolfersberger MG (1986) Bacillus thuringiensis toxin inhibits K-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett 204:213–218

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Rie JV, Lereclus D, Baum J, Feitelson J, Zeigler DJ, Dean DH (1995) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  CAS  Google Scholar 

  • Schwartz JL, Garneau L, Savaria D, Masson L, Brousseau R, Rousseau E (1993) Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers. J Membr Biol 132:53–62

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Siegel JP (2000) Bacteria. In: Lacey LL, Kaya HK (eds) In field manual of techniques in invertebrate pathology. Kluwer, Dordrecht, pp 209–230

    Chapter  Google Scholar 

  • Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LA (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270:5490–5494

    Article  CAS  PubMed  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jansens S, Beukeleer MD, Dean C, Zabeau M, Montagu MV, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Valaitis AP, Jenkins JL, Lee MK, Dean DH, Garner KJ (2001) Isolation and partial characterization of Gypsy moth BTR-270 an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Arch Insect Biochem Physiol 46:186–200

    Article  CAS  PubMed  Google Scholar 

  • van der Salm T, Bosch D, Honée G, Feng L, Munsterman E, Bakker P, Stiekema WJ, Visser B (1994) Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: a resistance management strategy. Plant Mol Biol 26:51–59

    Article  PubMed  Google Scholar 

  • Van Frankenhuyzen K (2000) Application of Bacillus thuringiensis in forestry. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Scientific publishers, Dordrecht, Netherlands, pp. 371

    Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1989) Specificity of Bacillus thuringiensis δ-endotoxins. Eur J Biochem 186:239–247

    Article  PubMed  Google Scholar 

  • Wolfersberger MG (1989) Neither barium nor calcium prevents the inhibition by Bacillus thuringiensis δ-endotoxin of sodium or potassium gradient-dependent amino acid accumulation by tobacco hornworm midgut brush border membrane vesicles. Arch Insect Biochem Physiol 12:267–277

    Article  CAS  Google Scholar 

  • Zeigler DR (1999) Bacillus Genetic Stock Center catalog of strains. Part 2: Bacillus thuringiensis and Bacillus cereus, 7th edn. Bacillus Genetic Stock Center, Columbus

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Sreevathsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srinivasa Rao, K.Y., Pattanayak, D., Sreevathsa, R. (2015). Bt Insecticidal Crystal Proteins: Role in Insect Management and Crop Improvement. In: Sree, K., Varma, A. (eds) Biocontrol of Lepidopteran Pests. Soil Biology, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-14499-3_3

Download citation

Publish with us

Policies and ethics