Skip to main content

Assessing Free and Bound Water in Skin at 300 MHz Using Tissue Dielectric Constant Measurements with the MoistureMeterD

  • Chapter
Lymphedema

Abstract

The MoistureMeterD is used to noninvasively measure skin and upper subcutis tissue dielectric constant (TDC) at almost any anatomical site to depths from 0.5 mm to 5 mm at a frequency of 300 MHz by touching the skin with a handheld probe for about 10 s. Because TDC at this frequency is largely dependent on free and bound water content of the tissue being measured, TDC measurements are useful to assess localized edema and lymphedema and their changes. In this chapter further aspects of TDC use are elaborated upon, and factors that impact its measurement and value are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayrovitz HN, Bernal M, Brlit F, Desfor R. Biophysical measures of skin tissue water: variations within and among anatomical sites and correlations between measures. Skin Res Technol. 2013;19(1):47–54.

    Article  PubMed  Google Scholar 

  2. Mayrovitz HN, Bernal M, Carson S. Gender differences in facial skin dielectric constant measured at 300 MHz. Skin Res Technol. 2012;18:504–10.

    Article  PubMed  Google Scholar 

  3. Nuutinen J, Lahtinen T, Turunen M, Alanen E, Tenhunen M, Usenius T, et al. A dielectric method for measuring early and late reactions in irradiated human skin. Radiother Oncol. 1998;47(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  4. Mayrovitz HN, Guo X, Salmon M, Uhde M. Forearm skin tissue dielectric constant measured at 300 MHz: effect of changes in skin vascular volume and blood flow. Clin Physiol Funct Imaging. 2013;33(1):55–61.

    Article  PubMed  Google Scholar 

  5. Mayrovitz HN, Luis M. Spatial variations in forearm skin tissue dielectric constant. Skin Res Technol. 2010;16(4):438–43.

    Article  PubMed  Google Scholar 

  6. Mayrovitz HN, Davey S, Shapiro E. Local tissue water changes assessed by tissue dielectric constant: single measurements versus averaging of multiple measurements. Lymphology. 2008;41(4):186–8.

    CAS  PubMed  Google Scholar 

  7. Mayrovitz HN, Brown-Cross D, Washington Z. Skin tissue water and laser Doppler blood flow during a menstrual cycle. Clin Physiol Funct Imaging. 2007;27(1):54–9.

    Article  PubMed  Google Scholar 

  8. Mayrovitz HN, Davey S, Shapiro E. Local tissue water assessed by tissue dielectric constant: anatomical site and depth dependence in women prior to breast cancer treatment-related surgery. Clin Physiol Funct Imaging. 2008;28(5):337–42.

    Article  PubMed  Google Scholar 

  9. Mayrovitz HN, McClymont A, Pandya N. Skin tissue water assessed via tissue dielectric constant measurements in persons with and without diabetes mellitus. Diabetes Technol Ther. 2013;15(1):60–5.

    Article  PubMed  Google Scholar 

  10. Jensen MR, Birkballe S, Nørregaard S, Karlsmark T. Validity and interobserver agreement of lower extremity local tissue water measurements in healthy women using tissue dielectric constant. Clin Physiol Funct Imaging. 2012;32(4):317–22.

    Article  PubMed  Google Scholar 

  11. Mayrovitz HN, Davey S. Changes in tissue water and indentation resistance of lymphedematous limbs accompanying low level laser therapy (LLLT) of fibrotic skin. Lymphology. 2011;44(4):168–77.

    CAS  PubMed  Google Scholar 

  12. Mayrovitz HN. Local tissue water assessed by measuring forearm skin dielectric constant: dependence on measurement depth, age and body mass index. Skin Res Technol. 2010;16(1):16–22.

    Article  PubMed  Google Scholar 

  13. Mayrovitz HN, Weingrad DN, Davey S. Local tissue water in at-risk and contralateral forearms of women with and without breast cancer treatment-related lymphedema. Lymphat Res Biol. 2009;7(3):153–8.

    Article  PubMed  Google Scholar 

  14. Mayrovitz HN. Assessing lymphedema by tissue indentation force and local tissue water. Lymphology. 2009;42(2):88–98.

    CAS  PubMed  Google Scholar 

  15. Mayrovitz HN, Davey S, Shapiro E. Localized tissue water changes accompanying one manual lymphatic drainage (MLD) therapy session assessed by changes in tissue dielectric constant inpatients with lower extremity lymphedema. Lymphology. 2008;41(2):87–92.

    CAS  PubMed  Google Scholar 

  16. Mayrovitz HN, Macdonald J, Davey S, Olson K, Washington E. Measurement decisions for clinical assessment of limb volume changes in patients with bilateral and unilateral limb edema. Phys Ther. 2007;87(10):1362–8.

    Article  PubMed  Google Scholar 

  17. Mayrovitz HN. Assessing local tissue edema in postmastectomy lymphedema. Lymphology. 2007;40(2):87–94.

    CAS  PubMed  Google Scholar 

  18. Birkballe S, Jensen MR, Noerregaard S, Gottrup F, Karlsmark T. Can tissue dielectric constant measurement aid in differentiating lymphoedema from lipoedema in women with swollen legs? Br J Dermatol. 2014;170(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  19. Petaja L, Nuutinen J, Uusaro A, Lahtinen T, Ruokonen E. Dielectric constant of skin and subcutaneous fat to assess fluid changes after cardiac surgery. Physiol Meas. 2003;24(2):383–90.

    Article  PubMed  Google Scholar 

  20. Stuchly MA, Athey TW, Stuchly SS, Samaras GM, Taylor G. Dielectric properties of animal tissues in vivo at frequencies 10 MHz–1 GHz. Bioelectromagnetics. 1981;2(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  21. Aimoto A, Matsumoto T. Noninvasive method for measuring the electrical properties of deep tissues using an open-ended coaxial probe. Med Eng Phys. 1996;18(8):641–6.

    Article  CAS  PubMed  Google Scholar 

  22. Grant JP, Clarke RN, Symm GT, Spyrou NM. In vivo dielectric properties of human skin from 50 MHz to 2.0 GHz. Phys Med Biol. 1988;33(5):607–12.

    Article  CAS  PubMed  Google Scholar 

  23. Alanen E, Lahtinen T, Nuutinen J. Measurement of dielectric properties of subcutaneous fat with open-ended coaxial sensors. Phys Med Biol. 1998;43(3):475–85.

    Article  CAS  PubMed  Google Scholar 

  24. Alanen E, Lahtinen T, Nuutinen J. Variational formulation of open-ended coaxial line in contact with layered biological medium. IEEE Trans Biomed Eng. 1998;45(10):1241–8.

    Article  CAS  PubMed  Google Scholar 

  25. Smith SR, Foster KR. Dielectric properties of low-water-content tissues. Phys Med Biol. 1985;30(9):965–73.

    Article  CAS  PubMed  Google Scholar 

  26. Nuutinen J, Ikaheimo R, Lahtinen T. Validation of a new dielectric device to assess changes of tissue water in skin and subcutaneous fat. Physiol Meas. 2004;25(2):447–54.

    Article  CAS  PubMed  Google Scholar 

  27. Lahtinen T, Nuutinen J, Alanen E. Dielectric properties of the skin. Phys Med Biol. 1997;42(7):1471–2.

    Article  CAS  PubMed  Google Scholar 

  28. Mayrovitz HN, Carson S, Luis M. Male-female differences in forearm skin tissue dielectric constant. Clin Physiol Funct Imaging. 2010;30(5):328–32.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey N. Mayrovitz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayrovitz, H.N. (2015). Assessing Free and Bound Water in Skin at 300 MHz Using Tissue Dielectric Constant Measurements with the MoistureMeterD. In: Greene, A., Slavin, S., Brorson, H. (eds) Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-319-14493-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14493-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14492-4

  • Online ISBN: 978-3-319-14493-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics