Skip to main content

Proximal Methods for the Elastography Inverse Problem of Tumor Identification Using an Equation Error Approach

  • Chapter
  • First Online:
Advances in Variational and Hemivariational Inequalities

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 33))

Abstract

In this chapter, we study a nonlinear inverse problem in linear elasticity relating to tumor identification by an equation error formulation. This approach leads to a variational inequality as a necessary and sufficient optimality condition. We give complete convergence analysis for the proposed equation error method. Since the considered problem is highly ill-posed, we develop a stable computational framework by employing a variety of proximal point methods and compare their performance with the more commonly used Tikhonov regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It would be natural to define J by

    $$\displaystyle{J(\mu; z,\beta ) =\| E_{1}(\mu,z) - m\|_{V ^{{\ast}}}^{2} +\| E_{ 2}(z)\|_{V ^{{\ast}}}^{2} +\beta \|\mu \|_{ H^{1}}^{2}.}$$

    However, \(\|E_{2}(z)\|_{V ^{{\ast}}}^{2}\) is constant with respect to μ and therefore it makes no difference if this term is included or not.

References

  1. Acar, R.: Identification of the coefficient in elliptic equations. SIAM J. Control Optim. 31, 1221–1244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aguilo, M.A., Aquino, W., Brigham, J.C., Fatemi, M.: An inverse problem approach for elasticity imaging through vibroacoustics. IEEE Trans. Med. Imaging 29, 1012–1021 (2010)

    Article  Google Scholar 

  3. Al-Jamal, M.F., Gockenbach, M.S.: Stability and error estimates for an equation error method for elliptic equations. Inverse Prob. 28, 095006, 15 pp. (2012)

    Google Scholar 

  4. Ammari, H., Garapon, P., Jouve, F.: Separation of scales in elasticity imaging: a numerical study. J. Comput. Math. 28, 354–370 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold, A., Reichling, S., Bruhns, O., Mosler, J.: Efficient computation of the elastography inverse problem by combining variational mesh adaption and clustering technique. Phys. Med. Biol. 55, 2035–2056 (2010)

    Article  Google Scholar 

  6. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  7. Cahill, N., Jadamba, B., Khan, A.A., Sama, M., Winkler, B.: A first-order adjoint and a second-order hybrid method for an energy output least squares elastography inverse problem of identifying tumor location. Bound. Value Prob. 2013, 263 (2013). doi:10.1186/1687-2770-2013-263

  8. Crossen, E., Gockenbach, M.S., Jadamba, B., Khan, A.A., Winkler, B.: An equation error approach for the elasticity imaging inverse problem for predicting tumor location. Comput. Math. Appl. 67, 122–135 (2014)

    Article  MathSciNet  Google Scholar 

  9. Doyley, M.M., Meaney, P.M., Bamber, J.C.: Evaluation of an iterative reconstruction method for quantitative elastography. Phys. Med. Biol. 45, 1521–1540 (2000)

    Article  Google Scholar 

  10. Doyley, M.M., Jadamba, B., Khan, A.A., Sama, M., Winkler, B.: A new energy inversion for parameter identification in saddle point problems with an application to the elasticity imaging inverse problem of predicting tumor location. Numer. Funct. Anal. Optim. 35, 984–1017 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fehrenbach, J., Masmoudi, M., Souchon, R., Trompette, P.: Detection of small inclusions by elastography. Inverse Prob. 22, 1055–1069 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gockenbach, M.S., Khan, A.A.: Identification of Lamé parameters in linear elasticity: a fixed point approach. J. Ind. Manag. Optim. 1, 487–497 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gockenbach, M.S., Khan, A.A.: An abstract framework for elliptic inverse problems. Part 1: an output least-squares approach. Math. Mech. Solids 12, 259–276 (2007)

    MATH  MathSciNet  Google Scholar 

  14. Gockenbach, M.S., Khan, A.A.: An abstract framework for elliptic inverse problems. Part 2: an augmented Lagrangian approach. Math. Mech. Solids 14, 517–539 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Gockenbach, M.S., Jadamba, B., Khan, A.A.: Numerical estimation of discontinuous coefficients by the method of equation error. Int. J. Math. Comput. Sci. 1, 343–359 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Gockenbach, M.S., Jadamba, B., Khan, A.A.: Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters. Inverse Prob. Sci. Eng. 16, 349–367 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hager, W., Zhang, H.: Self-adaptive inexact proximal point methods. Comput. Optim. Appl. 39, 161–181 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Han, D.: A generalized proximal-point-based prediction-correction method for variational inequality problems. J. Comput. Appl. Math. 221, 183–193 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jadamba, B., Khan, A.A., Raciti, F.: On the inverse problem of identifying Lamé coefficients in linear elasticity. Comput. Math. Appl. 56, 431–443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jadamba, B., Khan, A.A., Rus, G., Sama, M., Winkler, B.: A new convex inversion for parameter identification in saddle point problems with an application to the elasticity imaging inverse problem of prediction tumor location. SIAM Appl. Math. 74, 1486–1510 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kanzow, C.: Proximal-like methods for convex minimization problems. In: Qi, L., Teo, K., Yang, X. (eds.) Optimization and Control with Applications, pp. 369–392. Springer, New York (2005)

    Chapter  Google Scholar 

  22. Kaplan, A., Tichatschke, R.: Proximal point method and elliptic regularization. Nonlinear Anal. 71, 4525–4543 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Khan, A.A., Rouhani, B.D.: Iterative regularization for elliptic inverse problems. Comput. Math. Appl. 54, 850–860 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. McLaughlin, J., Yoon, J.R.: Unique identifiability of elastic parameters from time-dependent interior displacement measurement. Inverse Prob. 20, 25–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Oberai, A.A., Gokhale, N.H., Feijóo, G.R.: Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Prob. 19, 297–313 (2003)

    Article  MATH  Google Scholar 

  26. Parente, L.A., Lotito, P.A., Solodov, M.V.: A class of inexact variable metric proximal point algorithms. SIAM J. Optim. 19, 240–260 (2008)

    Article  MathSciNet  Google Scholar 

  27. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tossings, P.: Mixing proximal regularization, penalization and parallel decomposition in convex programming. Advances in optimization (Lambrecht, 1991), Lecture Notes in Econom. and Math. Systems, Springer, Berlin, 382, 85–99 (1992)

    MathSciNet  Google Scholar 

  29. Tossings, P.: The perturbed proximal point algorithm and some of its applications. Appl. Math. Optim. 29, 125–159 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading and suggestions that brought substantial improvements to the work. The work of A.A. Khan is partially supported by RIT’s COS D-RIG Acceleration Research Funding Program 2012–2013 and a grant from the Simons Foundation (#210443 to Akhtar Khan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Gockenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gockenbach, M.S., Jadamba, B., Khan, A.A., Tammer, C., Winkler, B. (2015). Proximal Methods for the Elastography Inverse Problem of Tumor Identification Using an Equation Error Approach. In: Han, W., Migórski, S., Sofonea, M. (eds) Advances in Variational and Hemivariational Inequalities. Advances in Mechanics and Mathematics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-14490-0_7

Download citation

Publish with us

Policies and ethics