Skip to main content

A Visible Perception from the Nano-world: Visible Light-Active Metal Oxide Nanomaterials in Photocatalysis and Quantum Dot Engineering in Solar Cells

  • Chapter
Oxide Thin Films, Multilayers, and Nanocomposites

Abstract

Solar energy or visible light, as a renewable free sources using diverse types of nanomaterials as photocatalysts for air remediation or solar cell applications, can give solutions to environmental problems by controlling the nanomaterial’s morphology shape or doping condition, as well as the adjustment of required bandgap according to specific compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annual Energy Outlook 2014, DOE/EIA-03883 (2014)

    Google Scholar 

  2. V.M. Menéndez-Flores, D. Friedmann, D.W. Bahnemann, Int. J. Photoenergy, 280513, 11 pages (2008)

    Google Scholar 

  3. V.M. Menéndez-Flores, T. Ohno, Catal. Today 230, 214 (2014)

    Article  Google Scholar 

  4. J.D. Major, R.E. Treharne, L.J. Phillips, K. Durose, Nature 511(7509), 334 (2014)

    Article  Google Scholar 

  5. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014)

    Article  Google Scholar 

  6. K. Zweibel, Science 328, 699 (2010)

    Article  Google Scholar 

  7. K. Yoshihara, Y. Sakamoto, M. Kawasaki, Y. Takatori, S. Kato, Y. Kajii, Bull. Chem. Soc. Jpn. 87(5), 593 (2014)

    Article  Google Scholar 

  8. V.M. Menendez-Flores, Developing Nanoparticles for Decomposition of Toxic Compounds (Südwestdeutscher Verlag für Hochschulschriften AG Co. KG, Saarbrücken, 2010). 188 Pages. ISBN 978-3-8381-1953-3

    Google Scholar 

  9. D. Wang, J. Liu, Q. Huo, Z. Nie, W. Lu, R.E. Williford, Y.B. Jiang, J. Am. Chem. Soc. 128, 13670 (2006)

    Article  Google Scholar 

  10. B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J. 11, 454 (2005)

    Article  Google Scholar 

  11. V.M. Menéndez-Flores, M. Nakamura, T. Kida, Z. Jin, N. Murakami, T. Ohno, Appl. Catal. A Gen. 406, 119 (2011)

    Article  Google Scholar 

  12. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007)

    Article  Google Scholar 

  13. K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, M. Kakihana, Angew. Chem. Int. Ed. Engl. 118, 2438 (2006)

    Article  Google Scholar 

  14. E.P. Meagher, G.A. Lager, Can. Mineral. 17, 77 (1979)

    Google Scholar 

  15. L. Pauling, J.H. Sturdivant, Z. Kristallogr. 68, 239 (1928)

    Google Scholar 

  16. H. Kominami, M. Kohno, Y. Kera, J. Mater. Chem. 10, 1151 (2000)

    Article  Google Scholar 

  17. H. Kominami, Y. Ishii, M. Kohno, S. Konishi, Y. Kera, B. Ohtani, Catal. Lett., 91(1-2): 41–47 (2003)

    Google Scholar 

  18. R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, P.D. Cozzli, J. Am. Chem. Soc. 130, 11223 (2008)

    Article  Google Scholar 

  19. W. Hu, L. Li, G. Li, C. Tang, L. Sun, Cryst. Growth Des. 9, 3676 (2009)

    Article  Google Scholar 

  20. T.A. Kandiel, A. Fledhoff, L. Robben, R. Dillert, D.W. Bahnemann, Chem. Mater. 22, 2050 (2010)

    Article  Google Scholar 

  21. A. Di Paola, M. Bellardita, L. Palmisano, Catalysts 3, 36 (2013)

    Article  Google Scholar 

  22. L. Atanasoska, P. Gupta, C. Deng, R. Warner, S. Larsen, J. Thomson, ECS Trans. 16, 37 (2009)

    Article  Google Scholar 

  23. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chem. Eur. J. 11, 440 (2005)

    Article  Google Scholar 

  24. P. Zhang, S. Yin, T. Sato, Appl. Catal. B 89, 118 (2009)

    Article  Google Scholar 

  25. Y. Morishima, M. Kobayashi, V. Petrykin, M. Kakihana, K. Tomita, J. Ceram. Soc. Jpn 115, 826 (2007)

    Article  Google Scholar 

  26. S. Horikoshi, M. Abe, S. Sato, N. Serpone, J. Photochem. Photobiol. A Chem. 220, 94 (2011)

    Article  Google Scholar 

  27. E. Li, G. Shi, X. Hong, P. Wu, J. Appl. Polym. Sci., 3(1) 189–195, (2004)

    Google Scholar 

  28. T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, J. Phys. Chem. Lett. 111, 7574 (2007)

    Article  Google Scholar 

  29. V.M. Menéndez-Flores, D.W. Bahnemann, Teruhisa Ohno. Appl. Catal. B Environ. 103, 99 (2011)

    Article  Google Scholar 

  30. M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. 50, 11312 (2011)

    Article  Google Scholar 

  31. T. Sasamura, K. Okazaki, R. Tsunoda, A. Kudo, S. Kuwabata, T. Torimoto, Chem. Lett. 39, 619 (2010)

    Article  Google Scholar 

  32. T. Sasamura, K. Okazaki, A. Kudo, S. Kuwabata, T. Torimoto, RSC Adv. 2, 552 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Manuel Menéndez-Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Menéndez-Flores, V.M. (2015). A Visible Perception from the Nano-world: Visible Light-Active Metal Oxide Nanomaterials in Photocatalysis and Quantum Dot Engineering in Solar Cells. In: Mele, P., Endo, T., Arisawa, S., Li, C., Tsuchiya, T. (eds) Oxide Thin Films, Multilayers, and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-14478-8_14

Download citation

Publish with us

Policies and ethics