Skip to main content

Hybrid Oxide Nanostructures as Photocatalysts

  • Chapter
  • 1327 Accesses

Abstract

The photocatalytic process and various approaches to enhance the efficiency of photocatalysis in metal oxides nanostructures are described in this chapter. The concept of coupling nanostructured metal oxide to another metal oxide or noble metal nanoparticles (NPs) to form hybrid material with novel properties is an attractive and efficient approach for enhancing the photocatalytic efficiency. The hybrid photocatalysts have shown to improve the carrier separation and visible light absorption and thus the photocatalytic efficiency. The effect of various noble metal NPs (Pt, Au, Ag) decoration/coupling on the photocatalytic activity of the metal oxide (TiO2, ZnO) semiconductors is discussed with the possible mechanisms. Various hybrid oxide nanostructures such as TiO2–ZnO, TiO2–SnO2–TiO2–WO3, TiO2–SiO2, ZnO–Fe2O3, ZnO–Fe3O4, ZnO–SnO2, ZnO–Cu2O are discussed for their photocatalytic activities. The promising photocatalytic properties of metal oxides hybrid with carbon based materials like carbon nanotubes and graphene is also described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995). doi:10.1021/cr00033a003

  2. M.R. Hoffmann, M.R. Hoffmann, S.T. Martin, S.T. Martin, W. Choi, W. Choi, D.W. Bahnemannt, D.W. Bahnemannt, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995). doi:10.1021/cr00033a004

  3. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl. Catal. A Gen. 359, 25–40 (2009). doi:10.1016/j.apcata.2009.02.043

  4. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004). doi:10.1016/j.jhazmat.2004.05.013

  5. S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013). doi:10.1038/nmat3684

  6. T.K. Townsend, E.M. Sabio, N.D. Browning, F.E. Osterloh, Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy Environ. Sci. 4, 4270 (2011). doi:10.1039/c1ee02110a

  7. K. Sayama, H. Hayashi, T. Arai, M. Yanagida, T. Gunji, H. Sugihara, Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl. Catal. B Environ. 94, 150–157 (2010). doi:10.1016/j.apcatb.2009.11.003

  8. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959 (2007). doi:10.1021/cr0500535

  9. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005). doi:10.1021/cr030063a

  10. R. Mohan, K. Krishnamoorthy, S.J. Kim, Diameter dependent photocatalytic activity of ZnO nanowires grown by vapor transport technique. Chem. Phys. Lett. 539–540, 83–88 (2012). doi:10.1016/j.cplett.2012.04.054

  11. A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 34, 151–180 (2004). doi:10.1146/annurev.matsci.34.040203.112141

  12. M.Y. Guo, M.K. Fung, F. Fang, X.Y. Chen, A.M.C. Ng, A.B. Djurišić, W.K. Chan, ZnO and TiO2 1D nanostructures for photocatalytic applications. J. Alloys Compd. 509, 1328–1332 (2011). doi:10.1016/j.jallcom.2010.10.028

  13. W. Xie, Y. Li, W. Shi, L. Zhao, X. Zhao, P. Fang, F. Zheng, S. Wang, Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO. Chem. Eng. J. 213, 218–224 (2012). doi:10.1016/j.cej.2012.10.004

  14. F. Spadavecchia, S. Ardizzone, G. Cappelletti, C. Oliva, S. Cappelli, Time effects on the stability of the induced defects in TiO2 nanoparticles doped by different nitrogen sources. J. Nanopart. Res. 14, 1301–1312 (2012). doi:10.1007/s11051-012-1301-y

  15. L. Zhang, H.H. Mohamed, R. Dillert, D. Bahnemann, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C Photochem. Rev. 13, 263–276 (2012). doi:10.1016/j.jphotochemrev.2012.07.002

  16. A.L. Linsebigler, A.L. Linsebigler, G. Lu, G. Lu, J.T. Yates Jr., J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995). doi:10.1021/cr00035a013

  17. S. Leytner, J.T. Hupp, Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide/aqueous solution interface via time-resolved photoacoustic spectroscopy. Chem. Phys. Lett. 330, 231–236 (2000). doi:10.1016/S0009-2614(00)01112-X

  18. M. Gratzel, Heterogeneous Photochemical Electron Transfer (CRC Press, Boca Raton, FL, 1989)

    Google Scholar 

  19. H.H. Mohamed, D.W. Bahnemann, The role of electron transfer in photocatalysis: Fact and fictions. Appl. Catal. B Environ. 128, 91–104 (2012). doi:10.1016/j.apcatb.2012.05.045

  20. P.V. Kamat, Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 3, 663–672 (2012). doi:10.1021/jz201629p

  21. J.J. Zou, H. He, L. Cui, H.Y. Du, Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method. Int. J. Hydrogen Energy 32, 1762–1770 (2007). doi:10.1016/j.ijhydene.2006.11.030

  22. L. Liu, G. Wang, Y. Li, Y. Li, J.Z. Zhang, CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photo electrochemical performance. Nano Res. 4(3), 249–258 (2011). doi:10.1007/s12274-010-0076-7

  23. P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133, 5660–5663 (2011). doi:10.1021/ja111102u

  24. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991–1022 (2002). doi:10.1016/S0360-3199(02)00022-8

  25. H. Tada, T. Kiyonaga, S. Naya, Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev. 38, 1849–1858 (2009). doi:10.1039/b822385h

  26. J. Sá, M. Fernández-García, J.A. Anderson, Photoformed electron transfer from TiO2 to metal clusters. Catal. Commun. 9, 1991–1995 (2008). doi:10.1016/j.catcom.2008.03.041

  27. E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, A. Etcheberry, C. Colbeau-Justin, H. Remita, Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis. J. Phys. Chem. C 117, 1955–1962 (2013). doi:10.1021/jp3112183

  28. S. Naya, M. Teranishi, T. Isobe, H. Tada, Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(IV) dioxide. Chem. Commun. (Camb.) 46, 815–817 (2010). doi:10.1039/b918444a

  29. I. Tanahashi, H. Iwagishi, G. Chang, Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Mater. Lett. 62, 2714–2716 (2008). doi:10.1016/j.matlet.2008.01.023

  30. E.A. Kozlova, T.P. Lyubina, M.A. Nasalevich, A.V. Vorontsov, A.V. Miller, V.V. Kaichev, V.N. Parmon, Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Catal. Commun. 12, 597–601 (2011). doi:10.1016/j.catcom.2010.12.007

  31. C. Cao, C. Hu, J. Tian, W. Shen, S. Wang, H. Liuc, Pt nanoparticles supported inside TiO2 nanotubes for effective ethanol electrooxidation. J. Electrochem. Soc. 160(11), H793–H799 (2013). doi:10.1149/2.011311jes

  32. F.C. Wang, C.H. Liu, C.W. Liu, J.H. Chao, C.H. Lin, Effect of pt loading order on photocatalytic activity of Pt/TiO2 nanofiber in generation of H2 from neat ethanol. J. Phys. Chem. C 113, 13832–13840 (2009). doi:10.1021/jp9033535

  33. Z. Liu, B. Guo, L. Hong, H. Jiang, Physicochemical and photocatalytic characterizations of TiO2/Pt nanocomposites. J. Photochem. Photobiol. A Chem. 172, 81–88 (2005). doi:10.1016/j.jphotochem.2004.11.008

  34. S.H. Kim, C.H. Jung, N. Sahu, D. Park, J.Y. Yun, H. Ha, J.Y. Park, Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Appl. Catal. A Gen. 454, 53–58 (2013). doi:10.1016/j.apcata.2012.12.049

  35. Y. Tan, X. Dai, Y. Li, D. Zhu, Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J. Mater. Chem. 13, 1069–1075 (2003). doi:10.1039/b211386d

  36. M. Anpo, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505–516 (2003). doi:10.1016/S0021-9517(02)00104-5

  37. C.H. Li, Y.H. Hsieh, W.T. Chiu, C.C. Liu, C.L. Kao, Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts. Sep. Purif. Technol. 58, 148–151 (2007). doi:10.1016/j.seppur.2007.07.013

  38. C.A. Emilio, M.I. Litter, M. Kunst, M. Bouchard, C. Colbeau-Justin, Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics. Langmuir 22, 3606–3613 (2006). doi:10.1021/la051962s

  39. J. Lee, W. Choi, Photocatalytic reactivity of surface platinized TiO2: Substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 109, 7399–7406 (2005). doi:10.1021/jp044425+

  40. J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114, 13118–13125 (2010). doi:10.1021/jp104488b

  41. K.Y. Ho, K.L. Yeung, Properties of TiO2 support and the performance of Au/TiO2 catalyst for CO oxidation reaction. Gold Bull. 40, 15–30 (2007). doi:10.1007/BF03215288

  42. Y.C. Pu, G. Wang, K. Der Chang, Y. Ling, Y.K. Lin, B.C. Fitzmorris, C.M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.J. Hsu, Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817–3823 (2013). doi:10.1021/nl4018385

  43. M. Valden, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998). doi:10.1126/science.281.5383.1647

  44. E. Kowalska, R. Abe, B. Ohtani B, Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: Action spectrum analysis. Chem Commun (Camb) 241–243. doi: 10.1039/b815679d

  45. S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, P. Liu, Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity. Appl. Catal. B Environ. 119–120, 146–155 (2012). doi:10.1016/j.apcatb.2012.02.020

  46. M. Kerker, The optics of colloidal silver: something old and something new. J. Colloid Interface Sci. 105, 297–314 (1985). doi:10.1016/0021-9797(85)90304-2

  47. W.H. Yang, G.C. Schatz, R.P. Van Duyne, Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103, 869–875 (1995). doi:10.1063/1.469787

  48. Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, M. Nogami, Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J. Phys. Chem. C 111, 9095–9104 (2007). doi:10.1021/jp068859b

  49. J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei, C. Jiang, Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island. Nanoscale Res. Lett. 7, 239 (2012). doi:10.1186/1556-276X-7-239

  50. J. Han, W. Qiu, W. Gao, Potential dissolution and photo-dissolution of ZnO thin films. J. Hazard. Mater. 178, 115–122 (2010). doi:10.1016/j.jhazmat.2010.01.050

  51. J.M. Lin, H.Y. Lin, C.L. Cheng, Y.F. Chen, Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 17, 4391–4394 (2006). doi:10.1088/0957-4484/17/17/017

  52. J. Yuan, E.S.G. Choo, X. Tang, Y. Sheng, J. Ding, J. Xue, Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications. Nanotechnology 21, 185606 (2010). doi:10.1088/0957-4484/21/18/185606

  53. C. Yu, K. Yang, Y. Xie, Q. Fan, J.C. Yu, Q. Shu, C. Wang, Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5, 2142–2151 (2013). doi:10.1039/c2nr33595f

  54. Q. Zhang, Q. Zhang, H. Wang, Y. Li, A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. J. Hazard. Mater. 254–255, 318–324 (2013). doi:10.1016/j.jhazmat.2013.04.012

  55. X. Zhao, W. Yongzhong, X. Hao, Electrodeposition synthesis of Au-ZnO hybrid nanowires and their photocatalytic properties. Int. J. Electrochem. Sci. 8, 3349–3356 (2013)

    Google Scholar 

  56. M.D.L. Ruiz Peralta, U. Pal, R.S. Zeferino, Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis. ACS Appl. Mater. Interfaces 4, 4807–4816 (2012). doi:10.1021/am301155u

  57. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. lv, T. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J. Hazard. Mater. 182, 123–129 (2010). doi:10.1016/j.jhazmat.2010.05.141

  58. S. Gao, X. Jia, S. Yang, Z. Li, K. Jiang, Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance. J. Solid State Chem. 184, 764–769 (2011). doi:10.1016/j.jssc.2011.01.025

  59. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis. Inorg. Chem. 46, 6980–6986 (2007). doi:10.1021/ic700688f

  60. X. Yong, M.A.A. Schoonen, The absolute energy positions of CB and VB of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)

    Google Scholar 

  61. C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, N. Wang, Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 4, 4181 (2014). doi:10.1038/srep04181

  62. C. Cheng, K.F. Yu, Y. Cai, K.K. Fung, N. Wang, Site-specific deposition of titanium oxide on zinc oxide nanorods. J. Phys. Chem. C 111, 16712–16716 (2007). doi:10.1021/jp0756911

  63. L. Wu, J. Xing, Y. Hou, F.Y. Xiao, Z. Li, H.G. Yang, Fabrication of regular ZnO/TiO2 heterojunctions with enhanced photocatalytic properties. Chem. A Eur. J. 19, 8393–8396 (2013). doi:10.1002/chem.201300849

  64. C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 nanostructures-Tio2 nanofibers heterostructures: Controlled fabrication and high photocatalytic properties. Inorg. Chem. 48, 7261–7268 (2009). doi:10.1021/ic9005983

  65. S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater. 18, 2411–2418 (2008). doi:10.1002/adfm.200800099

  66. K. Vinodgopal, I. Bedja, P.V. Kamat, Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem. Mater. 8, 2180–2187 (1996). doi:10.1021/cm950425y

  67. Y.R. Do, W. Lee, K. Dwight, A. Wold, The effect of WO3 on the photocatalytic activity of TiO2. J. Solid State Chem. 108, 198–201 (1994)

    Google Scholar 

  68. Y. Li, B.P. Bastakoti, M. Imura, S.M. Hwang, Z. Sun, J.H. Kim, S.X. Dou, Y. Yamauchi, Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly. Chem. A Eur. J. 20, 6027–6032 (2014). doi:10.1002/chem.201304689

  69. P. Klankaw, C. Chawengkijwanich, N. Grisdanurak, S. Chiarakorn, The hybrid photocatalyst of TiO2–SiO2 thin film prepared from rice husk silica. Superlattices Microstruct. 51, 343–352 (2012). doi:10.1016/j.spmi.2011.12.004

  70. S. Li, Y.H. Lin, B.P. Zhang, J.F. Li, C.W. Nan, BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. J. Appl. Phys. (2009). doi:10.1063/1.3091286

  71. X.Y. Li, Y. Hou, Q.D. Zhao, G.H. Chen, Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode. Langmuir 27, 3113–3120 (2011)

    Google Scholar 

  72. T. Cao, Y. Li, C. Wang, L. Wei, C. Shao, Y. Liu, Three-dimensional hierarchical CeO2 nanowalls/TiO2 nanofibers heterostructure and its high photocatalytic performance. J. Sol-Gel Sci. Technol. 55, 105–110 (2010). doi:10.1007/s10971-010-2221-x

  73. H. Eskandarloo, A. Alireza Badiei, M.A. Behnajady, TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables. Ind. Eng. Chem. Res. 53, 7847–7855 (2014). dx.doi.org/10.1021/ie403460d

  74. F. Achouri, S. Corbel, A. Aboulaich, L. Balan, A. Ghrabi, M. Ben Said, R. Schneider, Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J. Phys. Chem. Solid 75, 1081–1087 (2014). doi:10.1016/j.jpcs.2014.05.013

  75. Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang, X. Wen (David) Lou, A magnetically separable photocatalyst based on nest-like g-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4, 183 (2012). doi:10.1039/c1nr11114k

  76. J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, Y. Yin, Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem. Int. Ed. Engl. 46, 4342–4345 (2007). doi:10.1002/anie.200700197

  77. M. Villani, T. Rimoldi, D. Calestani, L. Lazzarini, V. Chiesi, F. Casoli, F. Albertini, A. Zappettini, Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles. Nanotechnology 24, 135601 (2013). doi:10.1088/0957-4484/24/13/135601

  78. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51, 7764–7773 (2012). doi:10.1021/ic300794j

  79. W.W. Wang, Y.J. Zhu, L.X. Yang, ZnO-SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater. 17, 59–64 (2007). doi:10.1002/adfm.200600431

  80. W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, F. Jiamo, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl. Catal. B Environ. 39, 269–279 (2002). doi:10.1016/S0926-3373(02)00115-7

  81. M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu, Novel preparation of nanosized ZnO-SnO2 with high photocatalytic activity by homogeneous co-precipitation method. Mater. Lett. 59, 3641–3644 (2005). doi:10.1016/j.matlet.2005.06.037

  82. M. Li, Y. Hu, S. Xie, Y. Huang, Y. Tong, X. Lu, Heterostructured ZnO/SnO2-x nanoparticles for efficient photocatalytic hydrogen production. Chem. Commun. (Camb.) 50, 4341–4343 (2014). doi:10.139/c3cc49485c

  83. Y. Cui, C. Wang, G. Liu, H. Yang, S. Wu, T. Wang, Fabrication and photocatalytic property of ZnO nanorod arrays on Cu2O thin film. Mater. Lett. 65, 2284–2286 (2011). doi:10.1016/j.matlet.2011.04.041

  84. K. Liu, J. Zhang, H. Gao, T. Xie, D. Wang, Photocatalytic property of ZnO microrods modified by Cu2O nanocrystals. J. Alloys Compd. 552, 299–303 (2013). doi:10.1016/j.jallcom.2012.10.111

  85. W. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A Chem. 235, 194–199 (2005). doi:10.1016/j.molcata.2005.02.027

  86. X. Shao, W. Lu, R. Zhang, F. Pan, Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation. Sci. Rep. 3, 3018 (2013). doi:10.1038/srep03018

  87. Y. Zhu, X. Zhang, R. Li, Q. Li, Planar-defect-rich zinc oxide nanoparticles assembled on carbon nanotube films as ultraviolet emitters and photocatalysts. Sci. Rep. 4, 4728 (2014). doi:10.1038/srep04728

  88. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi:10.1126/science.1102896

  89. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849

  90. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010). doi:10.1021/nn901221k

  91. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10, 577–583 (2010). doi:10.1021/nl9035109

  92. W. Tu, Y. Zhou, Z. Zou, Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. 23, 4996–5008 (2013). doi:10.1002/adfm.201203547

  93. G. Williams, B. Seger, P.V. Kamt, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008). doi:10.1021/nn800251f

  94. R. Czerw, B. Foley, D. Tekleab, A. Rubio, P. Ajayan, D. Carroll, Substrate-interface interactions between carbon nanotubes and the supporting substrate. Phys. Rev. B (2002). doi:10.1103/PhysRevB.66.033408

  95. H. Chen, L. Wang, Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein J. Nanotechnol. 5, 696–710 (2014). doi:10.3762/bjnano.5.82

  96. A. Du, Y.H. Ng, N.J. Bell, Z. Zhu, R. Amal, S.C. Smith, Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2, 894–899 (2011). doi:10.1021/jz2002698

  97. P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin, Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4, 1800 (2012). doi:10.1039/c2nr11938b

  98. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 113, 19812–19823 (2009). doi:10.1021/jp905456f

Download references

Acknowledgement

This work was supported by the project “CEITEC—Central European Institute of Technology” CZ.1.05/1.1.00/02.0068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohan, R., Hubalek, J. (2015). Hybrid Oxide Nanostructures as Photocatalysts. In: Mele, P., Endo, T., Arisawa, S., Li, C., Tsuchiya, T. (eds) Oxide Thin Films, Multilayers, and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-14478-8_13

Download citation

Publish with us

Policies and ethics