BChain: Byzantine Replication with High Throughput and Embedded Reconfiguration

  • Sisi Duan
  • Hein Meling
  • Sean Peisert
  • Haibin Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)


In this paper, we describe the design and implementation of BChain, a Byzantine fault-tolerant state machine replication protocol, which performs comparably to other modern protocols in fault-free cases, but in the face of failures can also quickly recover its steady state performance. Building on chain replication, BChain achieves high throughput and low latency under high client load. At the core of BChain is an efficient Byzantine failure detection mechanism called re-chaining, where faulty replicas are placed out of harm’s way at the end of the chain, until they can be replaced. Our experimental evaluation confirms our performance expectations for both fault-free and failure scenarios. We also use BChain to implement an NFS service, and show that its performance overhead, with and without failures, is low, both compared to unreplicated NFS and other BFT implementations.


Failure Detector Failure Scenario View Change Chain Order Crash Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M., Wylie, J.: Fault-scalable Byzantine fault-tolerant services. In: SOSP, pp. 59–74. ACM Press (2005)Google Scholar
  2. 2.
    Adams, J., Ramarao, K.: Distributed diagnosis of Byzantine processors and links. In: ICDCS, pp. 562–569. IEEE Computer Society (1989)Google Scholar
  3. 3.
    Baldoni, R., Helary, J., Raynal, M.: From crash fault-tolerance to arbitrary-fault tolerance: Towards a modular approach. In: DSN, pp. 273–282 (2000)Google Scholar
  4. 4.
    Benzel, T.: The science of cyber security experimentation: The DETER project. In: ACSAC (2011)Google Scholar
  5. 5.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, pp. 173–186. USENIX Association (1999)Google Scholar
  6. 6.
    Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM 43(2), 225–267 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chiang, M., Wang, S., Tseng, L.: An early fault diagnosis agreement under hybrid fault model. Expert Syst. Appl. 36(3), 5039–5050 (2009)CrossRefGoogle Scholar
  9. 9.
    Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine fault tolerant systems tolerate Byzantine faults. In: NSDI, pp. 153–168. USENIX Association (2009)Google Scholar
  10. 10.
  11. 11.
    Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.: UpRight cluster services. In: SOSP, pp. 277–290. ACM Press (2009)Google Scholar
  12. 12.
    Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: A hybrid quorum protocol for Byzantine fault tolerance. In: OSDI, pp. 177–190. USENIX Association (2006)Google Scholar
  13. 13.
    Doudou, A., Garbinato, B., Guerraoui, R., Schiper, A.: Muteness failure detectors: Specification and implementation. In: Hlavicka, J., Maehle, E., Pataricza, A. (eds.) EDDC 1999. LNCS, vol. 1667, pp. 71–87. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating Failure Detection: From Crash to Byzantine Failures. In: Blieberger, J., Strohmeier, A. (eds.) Ada-Europe 2002. LNCS, vol. 2361, pp. 24–50. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP, pp. 29–43 (2003)Google Scholar
  18. 18.
    Guerraoui, R., Knezevic, N., Quema, V., Vukolic, M.: The next 700 BFT protocols. In: EuroSys, pp. 363–376. ACM (2010)Google Scholar
  19. 19.
    Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: practical accountability for distributed systems. In: SOSP, pp. 175–188. ACM (2007)Google Scholar
  20. 20.
    Hendricks, J., Sinnamohideen, S., Ganger, G., Reiter, M.: Zzyzx: Scalable fault tolerance through Byzantine locking. In: DSN, pp. 363–372. IEEE Computer Society (2010)Google Scholar
  21. 21.
    Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party computation (Extended Abstract). In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Hsiao, H., Chin, Y., Yang, W.: Reaching fault diagnosis agreement under a hybrid fault model. IEEE Transactions on Computers 49(9) (September 2000)Google Scholar
  23. 23.
    Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine Fault Detectors for Solving Consensus. Comput. J. 46(1), 16–35 (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative Byzantine fault tolerance. In: SOSP, pp. 45–58. ACM (2007)Google Scholar
  25. 25.
    Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. Trans. on Programming Languages and Systems 6(2), 254–280 (1984)CrossRefGoogle Scholar
  26. 26.
    Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT News 41(1), 63–73 (2010)CrossRefGoogle Scholar
  27. 27.
    Malkhi, D., Reiter, M.: Unreliable intrusion detection in distributed computations. In: CSFW, pp. 116–125 (1997)Google Scholar
  28. 28.
    Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11(4) (1998)Google Scholar
  29. 29.
    Preperata, F., Metze, G., Chien, R.: On the connection asssignment problem of diagnosable systems. IEEE Transactions on Electronic Computers EC-16(6), 848–854 (1967)CrossRefGoogle Scholar
  30. 30.
    Ramarao, K., Adams, J.: On the diagnosis of Byzantine faults. In: Proc. Symp. Reliable Distributed Systems, pp. 144–153 (1988)Google Scholar
  31. 31.
    Schneider, F.: Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys 22(4), 299–319 (1990)CrossRefGoogle Scholar
  32. 32.
    Serafini, M., Bondavalli, A., Suri, N.: Online diagnosis and recovery: On the choice and impact of tuning parameters. IEEE Trans. Dependable Sec. Comput. 4(4), 295–312 (2007)CrossRefGoogle Scholar
  33. 33.
    Shin, K., Ramanathan, P.: Diagnosis of processors with Byzantine faults in a distributed computing system. In: Proc. Symp. Fault-Tolerant Computing, pp. 55–60 (July 1987)Google Scholar
  34. 34.
    van Renesse, R., Ho, C., Schiper, N.: Byzantine chain replication. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 345–359. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput and availability. In: OSDI, pp. 91–104. USENIX Association (2004)Google Scholar
  36. 36.
    Vukolic, M.: Abstractions for asynchronous distributed computing with malicious players. PhD thesis. EPFL, Lausanne, Switzerland (2008)Google Scholar
  37. 37.
    Walter, C., Lincoln, P., Suri, N.: Formally verified on-line diagnosis. IEEE Trans. Software Eng. 23(11), 684–721 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sisi Duan
    • 1
  • Hein Meling
    • 2
  • Sean Peisert
    • 1
  • Haibin Zhang
    • 1
  1. 1.University of CaliforniaDavisUSA
  2. 2.University of StavangerNorway

Personalised recommendations