Advertisement

On Developing Optimistic Transactional Lazy Set

  • Ahmed Hassan
  • Roberto Palmieri
  • Binoy Ravindran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

Transactional data structures with the same performance of highly concurrent data structures enable performance-competitive transactional applications. Although Software Transactional Memory (STM) is a promising technology for designing and implementing transactional applications, STM-based transactional data structures still perform inferior to their optimized, concurrent (i.e. non-transactional) counterparts. In this paper, we present OTB-Set, an efficient optimistic transactional lazy set based on both linked-list and skip-list implementations. We first provide general guidelines to show how to design a transactional (non-optimized) version of the highly concurrent lazy set with a minimal reengineering effort. Subsequently, we show how to make specific optimizations to the implementations of the OTB-Set for further enhancing its performance. We also prove that our OTB-Set provides linearizable individual operations and opaque transactions. Our experimental study on a 64-core machine reveals that OTB-Set outperforms competitors in most workloads.

Keywords

Software Transactional Memory Semantic Set Data Structure Boosting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Avni, H., Shavit, N.: Towards consistency oblivious programming. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 65–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Avni, H., Kuszmaul, B.C.: Improving htm scaling with consistency-oblivious programming. In: TRANSACT (2014)Google Scholar
  3. 3.
    Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication: High-performance concurrent sets and maps for stm. In: PODC, pp. 6–15 (2010)Google Scholar
  4. 4.
    Carlstrom, B.D., McDonald, A., Carbin, M., Kozyrakis, C., Olukotun, K.: Transactional collection classes. In: PPOPP, pp. 56–67 (2007)Google Scholar
  5. 5.
    Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing ownership records. In: PPOPP, pp. 67–78 (2010)Google Scholar
  6. 6.
    Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Diegues, N.L., Romano, P.: Time-warp: Lightweight abort minimization in transactional memory. In: PPoPP, pp. 167–178 (2014)Google Scholar
  8. 8.
    Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: PPOPP, pp. 175–184 (2008)Google Scholar
  10. 10.
    Hassan, A., Palmieri, R., Ravindran, B.: Integrating transactionally boosted data structures with stm frameworks: A case study on set. In: TRANSACT (2014)Google Scholar
  11. 11.
    Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In: PPOPP, pp. 387–388 (2014)Google Scholar
  12. 12.
    Hassan, A., Palmieri, R., Ravindran, B.: Remote invalidation: Optimizing the critical path of memory transactions. In: IPDPS, pp. 187–197 (2014)Google Scholar
  13. 13.
    Heller, S., Herlihy, M.P., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.N.: A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Herlihy, M., Koskinen, E.: Transactional boosting: A methodology for highly-concurrent transactional objects. In: PPOPP, pp. 207–216 (2008)Google Scholar
  15. 15.
    Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.N.: Software transactional memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)Google Scholar
  16. 16.
    Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint. Elsevier (2012)Google Scholar
  17. 17.
    Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)CrossRefGoogle Scholar
  18. 18.
    Ni, Y., Menon, V., Adl-Tabatabai, A.-R., Hosking, A.L., Hudson, R.L., Moss, J.E.B., Saha, B., Shpeisman, T.: Open nesting in software transactional memory. In: PPOPP, pp. 68–78 (2007)Google Scholar
  19. 19.
    Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing 10(2), 99–116 (1997)CrossRefGoogle Scholar
  21. 21.
    Xiang, L., Scott, M.L.: Composable partitioned transactions. In: WTTM (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ahmed Hassan
    • 1
  • Roberto Palmieri
    • 1
  • Binoy Ravindran
    • 1
  1. 1.ECE DepartmentVirginia TechBlacksburgUSA

Personalised recommendations