Advertisement

Fast and Compact Distributed Verification and Self-stabilization of a DFS Tree

  • Shay Kutten
  • Chhaya Trehan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

We present algorithms for distributed verification and silent-stabilization of a DFS(Depth First Search) spanning tree of a connected network. Computing and maintaining such a DFS tree is an important task, e.g., for constructing efficient routing schemes. Our algorithm improves upon previous work in various ways. Comparable previous work has space and time complexities of O(nlogΔ) bits per node and O(nD) respectively, where Δ is the highest degree of a node, n is the number of nodes and D is the diameter of the network. In contrast, our algorithm has a space complexity of O(logn) bits per node, which is optimal for silent-stabilizing spanning trees and runs in O(n) time. In addition, our solution is modular since it utilizes the distributed verification algorithm as an independent subtask of the overall solution. It is possible to use the verification algorithm as a stand alone task or as a subtask in another algorithm. To demonstrate the simplicity of constructing efficient DFS algorithms using the modular approach, we also present a (non-silent) self-stabilizing DFS token circulation algorithm for general networks based on our silent-stabilizing DFS tree. The complexities of this token circulation algorithm are comparable to the known ones.

Keywords

Fault Tolerance Self-* Solutions Silent-Stabilization DFS Spanning Trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications to self-stabilizationGoogle Scholar
  2. 2.
    Awerbuch, B.: A new distributed depth-first-search algorithm. Information Processing Letters 20(3), 147–150 (1985)CrossRefzbMATHGoogle Scholar
  3. 3.
    Awerbuch, B., Varghese, G.: Distributed program checking: A paradigm for building self-stabilizing distributed protocols (extended abstract). In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, SFCS, 1991, pp. 258–267. IEEE Computer Society, Washington, DC (1991)Google Scholar
  4. 4.
    Chlamtac, I., Kutten, S.: Tree-based broadcasting in multihop radio networks. IEEE Transactions on Computers 100(10), 1209–1223 (1987)CrossRefGoogle Scholar
  5. 5.
    Cidon, I.: Yet another distributed depth-first-search algorithm. Inf. Process. Lett. 26(6), 301–305 (1988)CrossRefGoogle Scholar
  6. 6.
    Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Information Processing Letters 49(6), 297–301 (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cournier, A., Devismes, S., Petit, F., Villain, V.: Snap-stabilizing depth-first search on arbitrary networks. Comput. J., 268–280 (2006)Google Scholar
  8. 8.
    Cournier, A., Devismes, S., Villain, V.: A snap-stabilizing DFS with a lower space requirement. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 33–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Datta, A.K., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token circulation in arbitrary rooted networks. Distrib. Comput. 13(4), 207–218 (2000)CrossRefGoogle Scholar
  10. 10.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dolev, S.: Self-stabilization. MIT Press (2000)Google Scholar
  12. 12.
    Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. Acta Informatica 36(6), 447–462 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Even, S.: Graph Algorithms. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  16. 16.
    Göös, M., Suomela Locally, J.: checkable proofs. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, pp. 159–168 (2011)Google Scholar
  17. 17.
    Huang, S.-T., Chen, N.-S.: Self-stabilizing depth-first token circulation on networks. Distributed Computing 7(1), 61–66 (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Johnen, C., Alari, G., Beauquier, J., Datta, A.K.: Self-stabilizing depth-first token passing on rooted networks. In: Mavronicolas, M. (ed.) WDAG 1997. LNCS, vol. 1320, pp. 260–274. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Johnen, C., Beauquier, J.: Space-efficient, distributed and self-stabilizing depth-first token circulation. In: In Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 4–1 (1995)Google Scholar
  20. 20.
    Katz, S., Perry, K.J.: Self-stabilizing extensions for meassage-passing systems. Distributed Computing 7(1), 17–26 (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 26–34. ACM, New York (2006)CrossRefGoogle Scholar
  22. 22.
    Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an mst. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2011, pp. 311–320. ACM, New York (2011)CrossRefGoogle Scholar
  23. 23.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing 22(4), 215–233 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Petit, F.: Highly space-efficient self-stabilizing depth-first token circulation for trees. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 47647–47649. Springer, Heidelberg (1997)Google Scholar
  25. 25.
    Petit, F.: Fast self-stabilizing depth-first token circulation. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 200–215. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Petit, F., Villain, V.: Color optimal self-stabilizing depth-first token circulation. In: ISPAN, pp. 317–323. IEEE Computer Society (1997)Google Scholar
  27. 27.
    Petit, F., Villain, V.: Optimality and self-stabilization in rooted tree networks. Parallel Processing Letters 10(01), 3–14 (2000)CrossRefGoogle Scholar
  28. 28.
    Petit, F., Villain, V.: Self-stabilizing depth-first token circulation in asynchronous message-passing systems. Computers and Artificial Intelligence 19(5) (2000)Google Scholar
  29. 29.
    Petit, F., Villain, V.: Optimal snap-stabilizing depth-first token circulation in tree networks. Journal of Parallel and Distributed Computing 67(1), 1–12 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Stomp, F.A.: Structured design of self-stabilizing programs. In: Proceedings of the 2nd Israel Symposium on the Theory and Computing Systems, pp. 167–176 (June 1993)Google Scholar
  31. 31.
    Varghese, G., Jayaram, M.: The fault span of crash failures. Journal of the ACM 47(2), 244–293 (2000)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shay Kutten
    • 1
  • Chhaya Trehan
    • 1
  1. 1.Faculty of Industrial Engineering and ManagementTechnionHaifaIsrael

Personalised recommendations