Advertisement

Fast Collisionless Pattern Formation by Anonymous, Position-Aware Robots

  • Tamás Lukovszki
  • Friedhelm Meyer auf der Heide
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

We consider a scenario of n identical autonomous robots on a 2D grid. They are memoryless and do not communicate. Their initial configuration does not have to be connected. Each robot r knows its position p r  ∈ Z 2. In addition, each robot knows the connected pattern F to be formed. F may be given by a set of n points in Z 2, or may be only partially described, e.g., by ”form a connected pattern”, or ”build a connected formation with minimum diameter” (Collisonless Gathering). We employ the Look-Compute-Move (LCM) model, and assume that in a time step each robot is able to move to an unoccupied neighboring grid vertex, thus guaranteeing that two robots will never collide, i.e., occupy the same position. The decision where to move solely depends on the configuration of its 2-hop neighborhood in the grid Z 2.

First we consider a helpful intermediate problem - we call it the Lemmings problem - where collision at one single point g, known to all robots, is allowed and the goal is that all robots gather at g. We present an algorithm solving this problem in 2n + D − 1 time steps, where D denotes the maximum initial distance from any robot to g. This time bound is easily shown to be optimal up to a constant factor.

Based on this strategy, forming a connected pattern can be done within the same time bound. Forming a connected pattern F needs additional considerations. We show how to do so in time O(n + D *), where D * denotes the diameter of the point set consisting of the initial configuration and F. For Collisionless gathering we obtain the same time bound, up to constant factors. This significantly improves upon the previous upper bound of O(nD) for this problem presented in [5].

Keywords

Autonomous mobile robots pattern formation gathering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sensors in unknown orthogonal environments. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS, vol. 5389, pp. 125–140. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Blázovics, L., Lukovszki, T.: Fast localized sensor self-deployment for focused coverage. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 83–94. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: Gathering. SIAM J. Comput. 41(4), 829–879 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6-7), 481–499 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2012)Google Scholar
  9. 9.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–447 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment for guaranteed coverage radius maximization. In: IEEE International Conference on Communications, ICC 2009, pp. 1–5 (2009)Google Scholar
  11. 11.
    Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Focused-coverage by mobile sensor networks. In: 6th IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 466–475 (2009)Google Scholar
  12. 12.
    Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Strictly localized sensor self-deployment for optimal focused coverage. IEEE Trans. Mob. Comput. 10(11), 1520–1533 (2011)CrossRefGoogle Scholar
  13. 13.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. In: Proc. 3rd International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 313–330 (1996)Google Scholar
  14. 14.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 201–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tamás Lukovszki
    • 1
  • Friedhelm Meyer auf der Heide
    • 2
  1. 1.Faculty of InformaticsEötvös Loránd UniversityBudapestHungary
  2. 2.Heinz Nixdorf Institute and Department of Computer ScienceUniversity of PaderbornGermany

Personalised recommendations