A Disruption-Resistant MAC Layer for Multichannel Wireless Networks

  • Henry Tan
  • Chris Wacek
  • Calvin Newport
  • Micah Sherr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)


Wireless networking occurs on a shared medium which renders communication vulnerable to disruption from other networks, environmental interference, and even malicious jammers. The standard solution to this problem is to deploy coordinated spread spectrum technologies that require pre-shared secrets between communicating devices. These secrets can be used to coordinate hopping patterns or spreading sequences. In this paper, by contrast, we study the local broadcast and unicast problems in a disrupted multichannel network with no pre-shared secrets between devices. Previous work in this setting focused on the special case of a single pre-designated sender in a single hop network topology. We consider in this paper, for the first time, upper and lower bounds to these problems in multihop topologies with multiple senders. To validate the potential real world application of our strategies, we conclude by describing a general purpose MAC protocol that uses the algorithms as key primitives, and validates its usefulness with a proof-of-concept implementation that runs the protocol on commodity hardware.


wireless broadcast jamming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awerbuch, B., Richa, A., Scheideler, C.: A Jamming-Resistant MAC Protocol for Single-Hop Wireless Networks. In: PODC (2008)Google Scholar
  2. 2.
    Barriére, L., Fraigniaud, P., Narayanan, L.: Robust position-based routing in wireless ad hoc networks with unstable transmission ranges. In: DIAL M, pp. 19–27 (2001)Google Scholar
  3. 3.
    Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader Election in Shared Spectrum Radio Networks. In: PODC (2012)Google Scholar
  4. 4.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Foerster, J.: The Performance of a Direct-Sequence Spread Ultra-Wideband System in the Presence of Multipath, Narrowband Interference, and Multiuser Interference. In: IEEE Conference on Ultra Wideband Systems and Technologies (2002)Google Scholar
  6. 6.
    Ghaffari, M., Gilbert, S., Newport, C., Tan, H.: Optimal Broadcast in Shared Spectrum Radio Networks. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 181–195. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Gilbert, S., Guerraoui, R., Newport, C.: Of Malicious Motes and Suspicious Sensors: On the Efficiency of Malicious Interference in Wireless Networks. Theoretical Computer Science 410(6-7), 546–569 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Tan, H., Wacek, C., Newport, C., Sherr, M.: A Disruption-Resistant MAC Layer for Multichannel Wireless Networks,
  9. 9.
    Jin, T., Noubir, G., Thapa, B.: Zero Pre-Shared Secret Key Establishment in the Presence of Jammers. In: MOBIHOC (2009)Google Scholar
  10. 10.
    Kavehrad, M., Ramamurthi, B.: Direct-Sequence Spread Spectrum with DPSK Modulation and Diversity for Indoor Wireless Communications. IEEE Transactions on Communications 35(2), 224–236 (1987)CrossRefGoogle Scholar
  11. 11.
    Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.: The Click Modular Router. ACM Transactions on Computer Systems (TOCS) 18(3), 263–297 (2000)CrossRefGoogle Scholar
  12. 12.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: PODC, pp. 60–68 (2005)Google Scholar
  13. 13.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wireless Networks 14(5), 715–729 (2008)CrossRefGoogle Scholar
  14. 14.
    Liu, A., Ning, P., Dai, H., Liu, Y.: USD-FH: Jamming-Resistant Wireless Communication using Frequency Hopping with Uncoordinated Seed Disclosure. In: MASS (2010a)Google Scholar
  15. 15.
    Liu, A., Ning, P., Dai, H., Liu, Y., Wang, C.: Defending DSSS-Based Broadcast Communication Against Insider Jammers via Delayed Seed-Disclosure. In: ACSAC (2010b)Google Scholar
  16. 16.
    Liu, Y., Ning, P., Dai, H., Liu, A.: Randomized Differential DSSS: Jamming-Resistant Wireless Broadcast Communication. In: INFOCOM (2010c)Google Scholar
  17. 17.
    Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: PODC, pp. 148–157. ACM (2005)Google Scholar
  18. 18.
    Navda, V., Bohra, A., Ganguly, S., Rubenstein, D.: Using channel hopping to increase 802.11 resilience to jamming attacks. In: INFOCOM (2007)Google Scholar
  19. 19.
    Pöpper, C., Strasser, M., Čapkun, S.: Jamming-Resistant Broadcast Communication without Shared Keys. In: USENIX Security Symposium (2009)Google Scholar
  20. 20.
    Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and Fair Throughput for Co-Existing Networks Under Adversarial Interference. In: PODC (2012)Google Scholar
  21. 21.
    Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive Throughput in Multi-Hop Wireless Networks Despite Adaptive Jamming. Distributed Computing 26(3), 159–171 (2013)CrossRefzbMATHGoogle Scholar
  22. 22.
    Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. 14th Int. Workshop on Parallel and Distributed Real-Time Systems, pp. 1–11 (2006)Google Scholar
  23. 23.
    Sharma, A., Belding, E.M.: FreeMAC: Framework for Multi-channel MAC Development on 802.11 Hardware. In: ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO) (2008)Google Scholar
  24. 24.
    Slater, D., Tague, P., Poovendran, R., Matt, B.: A Coding-Theoretic Approach for Efficient Message Verification over Insecure Channels. In: WiSec (2009)Google Scholar
  25. 25.
    Strasser, M., Capkun, S., Popper, C., Cagalj, M.: Jamming-Resistant Key Establishment using Uncoordinated Frequency Hopping. In: IEEE Symposium on Security and Privacy (2008)Google Scholar
  26. 26.
    Strasser, M., Pöpper, C., Čapkun, S.: Efficient Uncoordinated FHSS Anti-Jamming Communication. In: MOBIHOC (2009)Google Scholar
  27. 27.
    Xu, W., Wood, T., Trappe, W., Zhang, Y.: Channel surfing and spatial retreats: Defenses against wireless denial of service. In: ACM Workshop on Wireless Security (2004)Google Scholar
  28. 28.
    Xu, W., Trappe, W., Zhang, Y.: Channel Surfing: Defending Wireless Sensor Networks from Interference. In: ACM IPSN (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Henry Tan
    • 1
  • Chris Wacek
    • 1
  • Calvin Newport
    • 1
  • Micah Sherr
    • 1
  1. 1.Georgetown UniversityUSA

Personalised recommendations