Advertisement

Scalable Wake-up of Multi-channel Single-Hop Radio Networks

  • Bogdan S. Chlebus
  • Gianluca De Marco
  • Dariusz R. Kowalski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

We consider waking up a single-hop radio network with multiple channels. There are n stations connected to b channels without collision detection. Some k stations may become active spontaneously at arbitrary times, where k is unknown, and the goal is for all the stations to hear a successful transmission as soon as possible after the first spontaneous activation. We present a deterministic algorithm for the general problem that wakes up the network in \({\mathcal O}(k\log^{1/b} k\log n)\) time. We prove a lower bound that any deterministic algorithm requires \(\Omega(\frac{k}{b}\log \frac{n}{k})\) time. We give a deterministic algorithm for the special case when b > d loglogn, for some constant d > 1, which wakes up the network in \({\mathcal O}(\frac{k}{b}\log n\log(b\log n))\) time. This algorithm misses time optimality by at most a factor of lognlogb. We give a randomized algorithm that wakes up the network within \({\mathcal O}(k^{1/b}\ln \frac{1}{\epsilon})\) rounds with the probability of at least 1 − ε, for any unknown 0 < ε < 1. We also consider a model of jamming, in which each channel in any round may be jammed to prevent a successful transmission, which happens with some known parameter probability p, independently across all channels and rounds. For this model, we give a deterministic algorithm that wakes up the network in \({\mathcal O}(\log^{-1}(1/p) k\log n\log^{1/b} k)\) time with the probability of at least 1 − 1/poly(n).

Keywords

multiple access channel radio network multi-channel wake-up randomized algorithms distributed algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. Journal of Computer and System Sciences 43(2), 290–298 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alonso, G., Kranakis, E., Sawchuk, C., Wattenhofer, R., Widmayer, P.: Probabilistic protocols for node discovery in ad hoc multi-channel broadcast networks. In: Pierre, S., Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 104–115. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Anantharamu, L., Chlebus, B.S.: Broadcasting in ad hoc multiple access channels. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 237–248. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic broadcast on multiple access channels. In: Proceedings of the 29th IEEE International Conference on Computer Communications (INFOCOM), pp. 1–5 (2010)Google Scholar
  5. 5.
    Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Medium access control for adversarial channels with jamming. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 89–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Anantharamu, L., Chlebus, B.S., Rokicki, M.A.: Adversarial multiple access channel with individual injection rates. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 174–188. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Bieńkowski, M., Klonowski, M., Korzeniowski, M., Kowalski, D.R.: Dynamic sharing of a multiple access channel. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS). Leibniz International Proceedings in Informatics, vol. 5, pp. 83–94. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  8. 8.
    Chlebus, B.S., Gąsieniec, L., Gibbons, A.,, Pelc, A., Rytter, W.: Deterministic broadcasting in ad hoc radio networks. Distributed Computing 15(1), 27–38 (2002)CrossRefGoogle Scholar
  9. 9.
    Chlebus, B.S., Gąsieniec, L., Kowalski, D.R., Radzik, T.: On the wake-up problem in radio networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 347–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Chlebus, B.S., Kowalski, D.R.: A better wake-up in radio networks. In: Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 266–274 (2004)Google Scholar
  11. 11.
    Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple access channels in adversarial environments. Distributed Computing 22(2), 93–116 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple access channel. ACM Transactions on Algorithms 8(1), 5:1–5:31 (2012)Google Scholar
  13. 13.
    Chrobak, M., Gąsieniec, L., Kowalski, D.R.: The wake-up problem in multihop radio networks. SIAM Journal on Computing 36(5), 1453–1471 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Chrobak, M., Gąsieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. Journal of Algorithms 43(2), 177–189 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theoretical Computer Science 302(1-3), 337–364 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. Journal of Algorithms 60(2), 115–143 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Czyżowicz, J., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Consensus and mutual exclusion in a multiple access channel. IEEE Transaction on Parallel and Distributed Systems 22(7), 1092–1104 (2011)CrossRefGoogle Scholar
  18. 18.
    Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.C.: Maximal independent sets in multichannel radio networks. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 335–344 (2013)Google Scholar
  19. 19.
    Daum, S., Gilbert, S., Kuhn, F., Newport, C.C.: Leader election in shared spectrum radio networks. In: Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC), pp. 215–224 (2012)Google Scholar
  20. 20.
    Daum, S., Kuhn, F., Newport, C.: Efficient symmetry breaking in multi-channel radio networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 238–252. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    De Marco, G.: Distributed broadcast in unknown radio networks. In: Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 208–217 (2008)Google Scholar
  22. 22.
    De Marco, G.: Distributed broadcast in unknown radio networks. SIAM Journal on Computing 39(6), 2162–2175 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    De Marco, G., Kowalski, D.R.: Contention resolution in a non-synchronized multiple access channel. In: Proceedings of the 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 525–533 (2013)Google Scholar
  24. 24.
    De Marco, G., Kowalski, D.R.: Searching for a subset of counterfeit coins: Randomization vs determinism and adaptiveness vs non-adaptiveness. Random Structures and Algorithms 42(1), 97–109 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    De Marco, G., Pellegrini, M., Sburlati, G.: Faster deterministic wakeup in multiple access channels. Discrete Applied Mathematics 155(8), 898–903 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.C.: The wireless synchronization problem. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 190–199 (2009)Google Scholar
  27. 27.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel radio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging channel diversity to gain efficiency and robustness for wireless broadcast. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 252–267. Springer, Heidelberg (2011)Google Scholar
  29. 29.
    Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower bounds for clear transmissions in radio networks. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 447–454. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Frankl, P., Füredi, Z.: Forbidding just one intersection. Journal of Combinatorial Theory, Series A 39(2), 160–176 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Gąsieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast systems. SIAM Journal on Discrete Mathematics 14(2), 207–222 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C.: Interference-resilient information exchange. In: Proceedings of the 28th IEEE International Conference on Computer Communications (INFOCOM), pp. 2249–2257 (2009)Google Scholar
  33. 33.
    Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. Journal of the ACM 32(3), 589–596 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Holzer, S., Locher, T., Pignolet, Y.A., Wattenhofer, R.: Deterministic multi-channel information exchange. In: Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 109–120 (2012)Google Scholar
  35. 35.
    Holzer, S., Pignolet, Y.A., Smula, J., Wattenhofer, R.: Time-optimal information exchange on multiple channels. In: Proceedings of the 7th ACM International Workshop on Foundations of Mobile Computing (FOMC), pp. 69–76 (2011)Google Scholar
  36. 36.
    Jurdziński, T., Stachowiak, G.: Probabilistic algorithms for the wake-up problem in single-hop radio networks. Theory of Computing Systems 38(3), 347–367 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Komlós, J., Greenberg, A.G.: An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Transactions on Information Theory 31(2), 302–306 (1985)CrossRefzbMATHGoogle Scholar
  38. 38.
    Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the 24th ACM Symposium on Principles of Distributed Computing (PODC), pp. 158–166 (2005)Google Scholar
  39. 39.
    Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Distributed Computing 18(1), 43–57 (2005)CrossRefzbMATHGoogle Scholar
  40. 40.
    Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in radio networks. SIAM Journal on Computing 27(3), 702–712 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Shi, W., Hua, Q.-S., Yu, D., Wang, Y., Lau, F.C.M.: Efficient information exchange in single-hop multi-channel radio networks. In: Wang, X., Zheng, R., Jing, T., Xing, K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 438–449. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  42. 42.
    So, J., Vaidya, N.H.: Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminals using a single transceiver. In: Proceedings of the 5th ACM Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 222–233 (2004)Google Scholar
  43. 43.
    Wang, Y., Wang, Y., Yu, D., Yu, J., Lau, F.: Information exchange with collision detection on multiple channels. Journal of Combinatorial Optimization (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bogdan S. Chlebus
    • 1
  • Gianluca De Marco
    • 2
  • Dariusz R. Kowalski
    • 3
  1. 1.University of Colorado DenverDenverUSA
  2. 2.Università di SalernoFiscianoItaly
  3. 3.University of LiverpoolLiverpoolUnited Kingdom

Personalised recommendations