Advertisement

The Opinion Number of Set-Agreement

  • Pierre Fraigniaud
  • Sergio Rajsbaum
  • Matthieu Roy
  • Corentin Travers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8878)

Abstract

This paper carries on the effort to bridging runtime verification with distributed computability, studying necessary conditions for monitoring failure prone asynchronous distributed systems. It has been recently proved that there are correctness properties that require a large number of opinions to be monitored, an opinion being of the form true, false, perhaps, probably true, probably no, etc. The main outcome of this paper is to show that this large number of opinions is not an artifact induced by the existence of artificial constructions. Instead, monitoring an important class of properties, requiring processes to produce at most k different values does require such a large number of opinions. Specifically, our main result is a proof that it is impossible to monitor k-set-agreement in an n-process system with fewer than min {2k,n} + 1 opinions. We also provide an algorithm to monitor k-set-agreement with min {2k,n} + 1 opinions, showing that the lower bound is tight.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared Memory. J. ACM 40(4), 873–890 (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Attiya, H., Rajsbaum, S.: The Combinatorial Structure of Wait-free Solvable Tasks. SIAM Journal of Computing 31(4), 1286–1313 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by Local Checking and Correction. In: 32nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 268–277 (1991)Google Scholar
  4. 4.
    Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime Verification. J. Log. and Comput. 20(3), 651–674 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Gpu-based Runtime Verification. In: 27th IEEE International Parallel & Distributed Processing Symposium (IPDPS), pp. 1025–1036 (2013)Google Scholar
  7. 7.
    Chandy, M., Lamport, L.: Distributed Snapshots: Determining Global States of Distributed Systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)CrossRefGoogle Scholar
  8. 8.
    Chaudhuri, S.: More Choices Allow more Faults: Set Consensus Problems in Totally Asynchronous Systems. Information and Computation 105(1), 132–158 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fischer, M., Lynch, N., Paterson, M.: Impossibility of Distributed Consensus with One Faulty Process. J. ACM 32(2), 374–382 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 708–717 (2011)Google Scholar
  11. 11.
    Fraigniaud, P., Rajsbaum, S., Roy, M., Travers, C.: The Opinion Number of Set-Agreement. Technical report hal-01073578 (2014), http://hal.inria.fr/hal-01073578/PDF/
  12. 12.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-free Computing. Distributed Computing 26(4), 223–242 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: On the Number of Opinions Needed for Fault-Tolerant Run-Time Monitoring in Distributed Systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Henle, M.: A Combinatorial Introduction to Topology. Dover (1994)Google Scholar
  15. 15.
    Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann-Elsevier (2013)Google Scholar
  16. 16.
    Herlihy, M., Shavit, N.: The Topological Structure of Asynchronous Computability. J. ACM 46(6), 858–923 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Raynal, M.: Concurrent Programming - Algorithms, Principles, and Foundations. Springer (2013)Google Scholar
  18. 18.
    Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized Runtime Analysis of Multithreaded Applications. In: 20th International IEEE Parallel & Distributed Processing Symposium (IPDPS) (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Sergio Rajsbaum
    • 2
  • Matthieu Roy
    • 3
  • Corentin Travers
    • 4
  1. 1.CNRS and University Paris DiderotFrance
  2. 2.Instituto de MatemáticasUNAMMexico
  3. 3.CNRS, LAASUniv. ToulouseFrance
  4. 4.CNRS and U. of BordeauxFrance

Personalised recommendations