Skip to main content

Front-to-Rear Polarity in Migrating Cells

  • Chapter
  • First Online:
Cell Polarity 1

Abstract

Cell migration is a polarised cellular function involved both during development and in the adult where it participates to immune reaction, wound healing, tissue renewal, as well as cancer spreading. Migrating cells display a characteristic protruding front, at the opposite of a retracting trailing edge. This front-to-rear functional polarity, paralleled by the polarised morphology of the cell, reflects the polarisation of the intracellular organisation and signalling cascades. Random migration only requires the establishment of front-to-rear polarity; in contrast, the directed and persistent migration, as observed in vivo, necessitates the orientation of the front-to-rear polarity axis in a direction governed by multiple polarity cues found in the cell environment and the maintenance of the front-to-rear axis over time. This chapter summarises the characteristics of polarised migrating cells and presents the molecular mechanisms at the heart of the initiation, the orientation and the maintenance of front-to-rear polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram CL, Lowell CA (2009) The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 27:339–362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Affolter M, Weijer CJ (2005) Signaling to cytoskeletal dynamics during chemotaxis. Dev Cell 9(1):19–34. doi:10.1016/j.devcel.2005.06.003

    CAS  PubMed  Google Scholar 

  • Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering BM, De Zeeuw CI, Grosveld F, Galjart N (2001) Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104(6):923–935

    CAS  PubMed  Google Scholar 

  • Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9(4):309–322

    CAS  PubMed  Google Scholar 

  • Alblas J, Ulfman L, Hordijk P, Koenderman L (2001) Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell 12(7):2137–2145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393(6687):805–809. doi:10.1038/31729

    CAS  PubMed  Google Scholar 

  • Arias-Salgado EG, Lizano S, Shattil SJ, Ginsberg MH (2005) Specification of the direction of adhesive signaling by the integrin beta cytoplasmic domain. J Biol Chem 280(33):29699–29707

    CAS  PubMed  Google Scholar 

  • Arrieumerlou C, Meyer T (2005) A local coupling model and compass parameter for eukaryotic chemotaxis. Dev Cell 8(2):215–227. doi:10.1016/j.devcel.2004.12.007

    CAS  PubMed  Google Scholar 

  • Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lecine P, Bellaiche Y, Dupont JL, Premont RT, Sempere C, Strub JM, Van Dorsselaer A, Vitale N, Borg JP (2004) Mammalian Scribble forms a tight complex with the betaPIX exchange factor. Curr Biol 14(11):987–995

    CAS  PubMed  Google Scholar 

  • Balasubramanian N, Scott DW, Castle JD, Casanova JE, Schwartz MA (2007) Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 9(12):1381–1391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barber MA, Welch HC (2006) PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer 93(5):E44–E52

    PubMed  Google Scholar 

  • Becker SF, Mayor R, Kashef J (2013) Cadherin-11 mediates contact inhibition of locomotion during Xenopus neural crest cell migration. PLoS ONE 8(12):e85717. doi:10.1371/journal.pone.0085717

    PubMed Central  PubMed  Google Scholar 

  • Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–888

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhatt A, Kaverina I, Otey C, Huttenlocher A (2002) Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J Cell Sci 115(Pt 17):3415–3425

    CAS  PubMed  Google Scholar 

  • Bokoch GM, Vlahos CJ, Wang Y, Knaus UG, Traynor-Kaplan AE (1996) Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem J 315(Pt 3):775–779

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bolourani P, Spiegelman GB, Weeks G (2006) Delineation of the roles played by RasG and RasC in cAMP-dependent signal transduction during the early development of Dictyostelium discoideum. Mol Biol Cell 17(10):4543–4550. doi:10.1091/mbc.E05-11-1019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci U S A 107(30):13324–13329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brandt DT, Grosse R (2007) Get to grips: steering local actin dynamics with IQGAPs. EMBO Rep 8(11):1019–1023. doi:10.1038/sj.embor.7401089

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cai H, Das S, Kamimura Y, Long Y, Parent CA, Devreotes PN (2010) Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. J Cell Biol 190(2):233–245. doi:10.1083/jcb.201001129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cain RJ, Ridley AJ (2009) Phosphoinositide 3-kinases in cell migration. Biol Cell 101(1):13–29. doi:10.1042/BC20080079

    CAS  PubMed  Google Scholar 

  • Camand E, Peglion F, Osmani N, Sanson M, Etienne-Manneville S (2012) N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J Cell Sci 125(Pt 4):844–857. doi:10.1242/jcs.087668

    CAS  PubMed  Google Scholar 

  • Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126(Pt 2):393–401. doi:10.1242/jcs.100115

    CAS  PubMed  Google Scholar 

  • Carlier MF, Pantaloni D (2007) Control of actin assembly dynamics in cell motility. J Biol Chem 282(32):23005–23009. doi:10.1074/jbc.R700020200

    CAS  PubMed  Google Scholar 

  • Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456(7224):957–961. doi:10.1038/nature07441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page KM, Parsons M, Lambris JD, Mayor R (2011) Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev Cell 21(6):1026–1037. doi:10.1016/j.devcel.2011.10.012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cau J, Hall A (2005) Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci 118(Pt 12):2579–2587

    CAS  PubMed  Google Scholar 

  • Cavey M, Rauzi M, Lenne PF, Lecuit T (2008) A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453(7196):751–756. doi:10.1038/nature06953

    CAS  PubMed  Google Scholar 

  • Chamberlain CE, Kraynov VS, Hahn KM (2000) Imaging spatiotemporal dynamics of Rac activation in vivo with FLAIR. Methods Enzymol 325:389–400

    CAS  PubMed  Google Scholar 

  • Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM (2008) GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell 19(5):2147–2153. doi:10.1091/mbc.E07-12-1269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chao WT, Kunz J (2009) Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett 583(8):1337–1343. doi:10.1016/j.febslet.2009.03.037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charest PG, Firtel RA (2006) Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev 16(4):339–347. doi:10.1016/j.gde.2006.06.016

    CAS  PubMed  Google Scholar 

  • Charest PG, Shen Z, Lakoduk A, Sasaki AT, Briggs SP, Firtel RA (2010) A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell 18(5):737–749. doi:10.1016/j.devcel.2010.03.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175(3):477–490. doi:10.1083/jcb.200602085

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435(7040):365–369. doi:10.1038/nature03550

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Iijima M, Tang M, Landree MA, Huang YE, Xiong Y, Iglesias PA, Devreotes PN (2007) PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell 12(4):603–614. doi:10.1016/j.devcel.2007.03.005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48

    CAS  PubMed  Google Scholar 

  • Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A (2001) Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 276:1677–1680

    CAS  PubMed  Google Scholar 

  • Del Pozo MA, Schwartz MA (2007) Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 17(5):246–250

    PubMed  Google Scholar 

  • del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641

    PubMed  Google Scholar 

  • Desai RA, Gao L, Raghavan S, Liu WF, Chen CS (2009) Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 122(Pt 7):905–911

    PubMed Central  CAS  PubMed  Google Scholar 

  • Desai RA, Gopal SB, Chen S, Chen CS (2013) Contact inhibition of locomotion probabilities drive solitary versus collective cell migration. J R Soc Interface 10(88):20130717. doi:10.1098/rsif.2013.0717

    PubMed Central  PubMed  Google Scholar 

  • Di Cesare A, Paris S, Albertinazzi C, Dariozzi S, Andersen J, Mann M, Longhi R, de Curtis I (2000) p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nat Cell Biol 2(8):521–530

    PubMed  Google Scholar 

  • Drabek K, van Ham M, Stepanova T, Draegestein K, van Horssen R, Sayas CL, Akhmanova A, Ten Hagen T, Smits R, Fodde R, Grosveld F, Galjart N (2006) Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 16(22):2259–2264. doi:10.1016/j.cub.2006.09.065

    CAS  PubMed  Google Scholar 

  • Dujardin DL, Barnhart LE, Stehman SA, Gomes ER, Gundersen GG, Vallee RB (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J Cell Biol 163(6):1205–1211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dumortier JG, Martin S, Meyer D, Rosa FM, David NB (2012) Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc Natl Acad Sci U S A 109(42):16945–16950. doi:10.1073/pnas.1205870109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dupin I, Camand E, Etienne-Manneville S (2009) Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185(5):779–786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dupin I, Etienne-Manneville S (2011) Nuclear positioning: mechanisms and functions. Int J Biochem Cell Biol 43(12):1698–1707

    CAS  PubMed  Google Scholar 

  • Dupin I, Sakamoto Y, Etienne-Manneville S (2011) Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J Cell Sci 124(Pt 6):865–872. doi:10.1242/jcs.076356

    CAS  PubMed  Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12(6):917–930. doi:10.1016/j.devcel.2007.04.002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Efimov A, Schiefermeier N, Grigoriev I, Ohi R, Brown MC, Turner CE, Small JV, Kaverina I (2008) Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. J Cell Sci 121(Pt 2):196–204. doi:10.1242/jcs.012666

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478(7368):260–263. doi:10.1038/nature10430

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenmann KM, Harris ES, Kitchen SM, Holman HA, Higgs HN, Alberts AS (2007) Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 17(7):579–591. doi:10.1016/j.cub.2007.03.024

    CAS  PubMed  Google Scholar 

  • Ellenbroek SI, Iden S, Collard JG (2012) The Rac activator Tiam1 is required for polarized protrusional outgrowth of primary astrocytes by affecting the organization of the microtubule network. Small GTPases 3(1):4–14. doi:10.4161/sgtp.19379

    PubMed Central  PubMed  Google Scholar 

  • Etienne-Manneville S (2004a) Actin and microtubules in cell motility: which one is in control? Traffic 5:470–477

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S (2004b) Cdc42–the centre of polarity. J Cell Sci 117(Pt 8):1291–1300

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S (2009) APC in cell migration. Adv Exp Med Biol 656:30–40

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S (2010) From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 22(1):104–111

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S (2011) Control of polarized cell morphology and motility by adherens junctions. Semin Cell Dev Biol 22(8):850–857. doi:10.1016/j.semcdb.2011.07.023

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S (2012) Adherens junctions during cell migration. Subcell Biochem 60:225–249. doi:10.1007/978-94-007-4186-7_10

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S (2013) Microtubules in cell migration. Annu Rev Cell Dev Biol 29:471–499

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106(4):489–498

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2003a) Cdc42 regulates GSK3 and adenomatous polyposis coli (APC) to control cell polarity. Nature 421:753–756

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2003b) Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15:67–72

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Manneville J, Nicholls S, Ferenczi MA, Hall A (2005) Cdc42 and Par6/PKCz regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 170(6):895–901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116:2603–2611

    CAS  PubMed  Google Scholar 

  • Ezratty EJ, Bertaux C, Marcantonio EE, Gundersen GG (2009) Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187(5):733–747. doi:10.1083/jcb.200904054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181(6):879–884. doi:10.1083/jcb.200802081

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P (2010) Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol 8(12):e1000562. doi:10.1371/journal.pbio.1000562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6(10):977–983. doi:10.1038/ncb1175

    CAS  PubMed  Google Scholar 

  • Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL (2007) Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells. J Cell Biol 179(3):403–410. doi:10.1083/jcb.200704169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16(1):14–23

    CAS  PubMed  Google Scholar 

  • Fukata M, Nakagawa M, Kuroda S, Kaibuchi K (1999) Cell adhesion and Rho small GTPases. J Cell Sci 112(Pt 24):4491–4500

    CAS  PubMed  Google Scholar 

  • Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (2002) Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109(7):873–885

    CAS  PubMed  Google Scholar 

  • Funamoto S, Meili R, Lee S, Parry L, Firtel RA (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109(5):611–623

    CAS  PubMed  Google Scholar 

  • Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci U S A 108(35):14467–14472. doi:10.1073/pnas.1105845108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghassemi S, Meacci G, Liu S, Gondarenko AA, Mathur A, Roca-Cusachs P, Sheetz MP, Hone J (2012) Cells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci U S A 109(14):5328–5333. doi:10.1073/pnas.1119886109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giannone G, Mege RM, Thoumine O (2009) Multi-level molecular clutches in motile cell processes. Trends Cell Biol 19(9):475–486

    CAS  PubMed  Google Scholar 

  • Goh WI, Ahmed S (2012) mDia1-3 in mammalian filopodia. Commun Integr Biol 5(4):340–344. doi:10.4161/cib.20214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM, Ahmed S (2012) mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem 287(7):4702–4714. doi:10.1074/jbc.M111.305102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622. doi:10.1016/j.devcel.2007.10.007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121(3):451–463

    CAS  PubMed  Google Scholar 

  • Gumbiner BM, McCrea PD (1993) Catenins as mediators of the cytoplasmic functions of cadherins. J Cell Sci Suppl 17:155–158

    CAS  PubMed  Google Scholar 

  • Hahne P, Sechi A, Benesch S, Small JV (2001) Scar/WAVE is localised at the tips of protruding lamellipodia in living cells. FEBS Lett 492(3):215–220

    CAS  PubMed  Google Scholar 

  • Haugh JM, Codazzi F, Teruel M, Meyer T (2000) Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J Cell Biol 151(6):1269–1280

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hawkins RJ, Poincloux R, Benichou O, Piel M, Chavrier P, Voituriez R (2011) Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys J 101(5):1041–1045. doi:10.1016/j.bpj.2011.07.038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoeller O, Kay RR (2007) Chemotaxis in the absence of PIP3 gradients. Curr Biol 17(9):813–817. doi:10.1016/j.cub.2007.04.004

    CAS  PubMed  Google Scholar 

  • Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, Angenent SB, Altschuler SJ, Wu LF, Weiner OD (2012) Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148(1–2):175–188. doi:10.1016/j.cell.2011.10.050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang YE, Iijima M, Parent CA, Funamoto S, Firtel RA, Devreotes P (2003) Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol Biol Cell 14(5):1913–1922. doi:10.1091/mbc.E02-10-0703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huttenlocher A, Ginsberg MH, Horwitz AF (1996) Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol 134(6):1551–1562

    CAS  PubMed  Google Scholar 

  • Huttenlocher A, Horwitz AR (2011) Integrins in cell migration. Cold Spring Harb Perspect Biol 3(9):a005074. doi:10.1101/cshperspect.a005074

    PubMed Central  PubMed  Google Scholar 

  • Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8(9):918–921

    CAS  PubMed  Google Scholar 

  • Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9(11):846–859. doi:10.1038/nrm2521

    CAS  PubMed  Google Scholar 

  • Iglesias PA, Devreotes PN (2008) Navigating through models of chemotaxis. Curr Opin Cell Biol 20(1):35–40. doi:10.1016/j.ceb.2007.11.011

    CAS  PubMed  Google Scholar 

  • Iijima M, Devreotes P (2002) Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109(5):599–610

    CAS  PubMed  Google Scholar 

  • Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP, Scita G (2003) Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol 160(1):17–23. doi:10.1083/jcb.200206079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Insall RH, Machesky LM (2009) Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 17(3):310–322. doi:10.1016/j.devcel.2009.08.012

    CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    CAS  PubMed  Google Scholar 

  • Janetopoulos C, Firtel RA (2008) Directional sensing during chemotaxis. FEBS Lett 582(14):2075–2085. doi:10.1016/j.febslet.2008.04.035

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ji L, Lim J, Danuser G (2008) Fluctuations of intracellular forces during cell protrusion. Nat Cell Biol 10(12):1393–1400. doi:10.1038/ncb1797

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin T (2013) Gradient sensing during chemotaxis. Curr Opin Cell Biol 25(5):532–537. doi:10.1016/j.ceb.2013.06.007

    CAS  PubMed  Google Scholar 

  • Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44(1):1–8. doi:10.1016/j.cyto.2008.06.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin T, Zhang N, Long Y, Parent CA, Devreotes PN (2000) Localization of the G protein betagamma complex in living cells during chemotaxis. Science 287(5455):1034–1036

    CAS  PubMed  Google Scholar 

  • Kae H, Kortholt A, Rehmann H, Insall RH, Van Haastert PJ, Spiegelman GB, Weeks G (2007) Cyclic AMP signalling in Dictyostelium: G-proteins activate separate Ras pathways using specific RasGEFs. EMBO Rep 8(5):477–482. doi:10.1038/sj.embor.7400936

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kardash E, Reichman-Fried M, Maitre JL, Boldajipour B, Papusheva E, Messerschmidt EM, Heisenberg CP, Raz E (2010) A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat Cell Biol 12(1):47–53. doi:10.1038/ncb2003, Sup pp 41–11

    CAS  PubMed  Google Scholar 

  • Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K (1999) Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 147(5):1023–1038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Sato R, Akiyama T (2003) Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol 5(3):211–215

    CAS  PubMed  Google Scholar 

  • Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y, Higuchi O, Akiyama T (2000) Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289(5482):1194–1197

    CAS  PubMed  Google Scholar 

  • Kerstetter AE, Azodi E, Marrs JA, Liu Q (2004) Cadherin-2 function in the cranial ganglia and lateral line system of developing zebrafish. Dev Dyn 230(1):137–143. doi:10.1002/dvdy.20021

    CAS  PubMed  Google Scholar 

  • Kohler S, Schmoller KM, Crevenna AH, Bausch AR (2012) Regulating contractility of the actomyosin cytoskeleton by pH. Cell Rep 2(3):433–439. doi:10.1016/j.celrep.2012.08.014

    PubMed Central  PubMed  Google Scholar 

  • Kong M, Munoz N, Valdivia A, Alvarez A, Herrera-Molina R, Cardenas A, Schneider P, Burridge K, Quest AF, Leyton L (2013) Thy-1-mediated cell-cell contact induces astrocyte migration through the engagement of alphaVbeta3 integrin and syndecan-4. Biochim Biophys Acta 1833(6):1409–1420. doi:10.1016/j.bbamcr.2013.02.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kortholt A, King JS, Keizer-Gunnink I, Harwood AJ, Van Haastert PJ (2007) Phospholipase C regulation of phosphatidylinositol 3,4,5-trisphosphate-mediated chemotaxis. Mol Biol Cell 18(12):4772–4779. doi:10.1091/mbc.E07-05-0407

    CAS  PubMed  Google Scholar 

  • Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM (2000) Localized Rac activation dynamics visualized in living cells. Science 290:333–337

    CAS  PubMed  Google Scholar 

  • Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4(4):294–301

    CAS  PubMed  Google Scholar 

  • Kunda P, Craig G, Dominguez V, Baum B (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 13(21):1867–1875

    CAS  PubMed  Google Scholar 

  • Kuntziger T, Gavet O, Manceau V, Sobel A, Bornens M (2001) Stathmin/Op18 phosphorylation is regulated by microtubule assembly. Mol Biol Cell 12(2):437–448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98(4):534–542

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55. doi:10.1038/nature06887

    PubMed  Google Scholar 

  • Lammermann T, Renkawitz J, Wu X, Hirsch K, Brakebusch C, Sixt M (2009) Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113(23):5703–5710. doi:10.1182/blood-2008-11-191882

    PubMed  Google Scholar 

  • Lammermann T, Sixt M (2009) Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 21(5):636–644. doi:10.1016/j.ceb.2009.05.003

    PubMed  Google Scholar 

  • Langridge PD, Kay RR (2006) Blebbing of Dictyostelium cells in response to chemoattractant. Exp Cell Res 312(11):2009–2017. doi:10.1016/j.yexcr.2006.03.007

    CAS  PubMed  Google Scholar 

  • Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I, Demmers J, Galjart N, Houtsmuller AB, Grosveld F, Akhmanova A (2006) CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. Dev Cell 11(1):21–32

    CAS  PubMed  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    CAS  PubMed  Google Scholar 

  • le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189(7):1107–1115

    PubMed Central  PubMed  Google Scholar 

  • Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400(6742):382–386. doi:10.1038/22578

    CAS  PubMed  Google Scholar 

  • Li A, Ma Y, Yu X, Mort RL, Lindsay CR, Stevenson D, Strathdee D, Insall RH, Chernoff J, Snapper SB, Jackson IJ, Larue L, Sansom OJ, Machesky LM (2011) Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev Cell 21(4):722–734. doi:10.1016/j.devcel.2011.07.008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, Tang L, Hla T, Zeng R, Li L, Wu D (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7(4):399–404. doi:10.1038/ncb1236

    CAS  PubMed  Google Scholar 

  • Li Z, Hannigan M, Mo Z, Liu B, Lu W, Wu Y, Smrcka AV, Wu G, Li L, Liu M, Huang CK, Wu D (2003) Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 114(2):215–227

    CAS  PubMed  Google Scholar 

  • Lieber AD, Yehudai-Resheff S, Barnhart EL, Theriot JA, Keren K (2013) Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Curr Biol 23(15):1409–1417. doi:10.1016/j.cub.2013.05.063

    CAS  PubMed  Google Scholar 

  • Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107(22):9944–9949

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loovers HM, Postma M, Keizer-Gunnink I, Huang YE, Devreotes PN, van Haastert PJ (2006) Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. Mol Biol Cell 17(4):1503–1513. doi:10.1091/mbc.E05-09-0825

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luo BH, Springer TA (2006) Integrin structures and conformational signaling. Curr Opin Cell Biol 18(5):579–586

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luxton GW, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329(5994):956–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461(7260):99–103. doi:10.1038/nature08242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD (1994) Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127(1):107–115

    CAS  PubMed  Google Scholar 

  • Machesky LM, Insall RH (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8(25):1347–1356

    CAS  PubMed  Google Scholar 

  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285(5429):895–898

    CAS  PubMed  Google Scholar 

  • Manabe R, Kovalenko M, Webb DJ, Horwitz AR (2002) GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J Cell Sci 115(Pt 7):1497–1510

    CAS  PubMed  Google Scholar 

  • Manahan CL, Iglesias PA, Long Y, Devreotes PN (2004) Chemoattractant signaling in dictyostelium discoideum. Annu Rev Cell Dev Biol 20:223–253. doi:10.1146/annurev.cellbio.20.011303.132633

    CAS  PubMed  Google Scholar 

  • Manneville JB, Etienne-Manneville S (2006) Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biol Cell 98(9):557–565

    CAS  PubMed  Google Scholar 

  • Manneville JB, Jehanno M, Etienne-Manneville S (2010) Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. J Cell Biol 191(3):585–598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larrain J, Holt MR, Parsons M, Mayor R (2008) Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 135(10):1771–1780. doi:10.1242/dev.017350

    CAS  PubMed  Google Scholar 

  • McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002):362–366. doi:10.1126/science.1195491

    CAS  PubMed  Google Scholar 

  • Merlot S, Firtel RA (2003) Leading the way: Directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J Cell Sci 116(Pt 17):3471–3478

    CAS  PubMed  Google Scholar 

  • Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A (2005) CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol 168(1):141–153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mondal S, Subramanian KK, Sakai J, Bajrami B, Luo HR (2012) Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol Biol Cell 23(7):1219–1230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM (2004) Activation of endogenous Cdc42 visualized in living cells. Science 305(5690):1615–1619

    CAS  PubMed  Google Scholar 

  • Narumiya S, Ishizaki T, Watanabe N (1997) Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 410(1):68–72

    CAS  PubMed  Google Scholar 

  • Nieto M, Frade JM, Sancho D, Mellado M, Martinez AC, Sanchez-Madrid F (1997) Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J Exp Med 186(1):153–158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Niewiadomska P, Godt D, Tepass U (1999) DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144(3):533–547

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nimnual AS, Taylor LJ, Bar-Sagi D (2003) Redox-dependent downregulation of Rho by Rac. Nat Cell Biol 5(3):236–241. doi:10.1038/ncb938

    CAS  PubMed  Google Scholar 

  • Nishimura T, Kaibuchi K (2007) Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev Cell 13(1):15–28

    CAS  PubMed  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108(2):233–246

    CAS  PubMed  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac and Cdc42 regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81:53–62

    CAS  PubMed  Google Scholar 

  • Nola S, Sebbagh M, Marchetto S, Osmani N, Nourry C, Audebert S, Navarro C, Rachel R, Montcouquiol M, Sans N, Etienne-Manneville S, Borg JP, Santoni MJ (2008) Scrib regulates PAK activity during the cell migration process. Hum Mol Genet 17(22):3552–3565

    CAS  PubMed  Google Scholar 

  • Obermeier A, Ahmed S, Manser E, Yen SC, Hall C, Lim L (1998) PAK promotes morphological changes by acting upstream of Rac. EMBO J 17(15):4328–4339. doi:10.1093/emboj/17.15.4328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Osmani N, Peglion F, Chavrier P, Etienne-Manneville S (2010) Cdc42 localization and cell polarity depend on membrane traffic. J Cell Biol 191(7):1261–1269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Osmani N, Vitale N, Borg JP, Etienne-Manneville S (2006) Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol 16(24):2395–2405

    CAS  PubMed  Google Scholar 

  • Pacquelet A, Lin L, Rorth P (2003) Binding site for p120/delta-catenin is not required for Drosophila E-cadherin function in vivo. J Cell Biol 160(3):313–319. doi:10.1083/jcb.200207160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pacquelet A, Rorth P (2005) Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J Cell Biol 170(5):803–812. doi:10.1083/jcb.200506131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palazzo AF, Cook TA, Alberts AS, Gundersen GG (2001a) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3:723–729

    CAS  PubMed  Google Scholar 

  • Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG (2004) Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303(5659):836–839

    CAS  PubMed  Google Scholar 

  • Palazzo AF, Joseph HL, Chen YJ, Dujardin DL, Alberts AS, Pfister KK, Vallee RB, Gundersen GG (2001b) Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11:1536–1541

    CAS  PubMed  Google Scholar 

  • Paluch E, Sykes C, Prost J, Bornens M (2006) Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16(1):5–10. doi:10.1016/j.tcb.2005.11.003

    CAS  PubMed  Google Scholar 

  • Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95(1):81–91

    CAS  PubMed  Google Scholar 

  • Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peng H, Ong YM, Shah WA, Holland PC, Carbonetto S (2013) Integrins regulate centrosome integrity and astrocyte polarization following a wound. Dev Neurobiol 73(5):333–353. doi:10.1002/dneu.22055

    CAS  PubMed  Google Scholar 

  • Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440(7087):1069–1072. doi:10.1038/nature04665

    CAS  PubMed  Google Scholar 

  • Pestonjamasp KN, Forster C, Sun C, Gardiner EM, Bohl B, Weiner O, Bokoch GM, Glogauer M (2006) Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis. Blood 108(8):2814–2820. doi:10.1182/blood-2006-01-010363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pinner S, Sahai E (2008) Imaging amoeboid cancer cell motility in vivo. J Microsc 231(3):441–445. doi:10.1111/j.1365-2818.2008.02056.x

    CAS  PubMed  Google Scholar 

  • Poincloux R, Collin O, Lizarraga F, Romao M, Debray M, Piel M, Chavrier P (2011) Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc Natl Acad Sci U S A 108(5):1943–1948. doi:10.1073/pnas.1010396108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Postma M, Van Haastert PJ (2001) A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys J 81(3):1314–1323. doi:10.1016/S0006-3495(01)75788-8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297(5581):612–615. doi:10.1126/science.1072309

    CAS  PubMed  Google Scholar 

  • Qin Y, Capaldo C, Gumbiner BM, Macara IG (2005) The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 171(6):1061–1071. doi:10.1083/jcb.200506094

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A (2004) Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 303(5661):1179–1181

    CAS  PubMed  Google Scholar 

  • Redd MJ, Kelly G, Dunn G, Way M, Martin P (2006) Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton 63(7):415–422. doi:10.1002/cm.20133

    CAS  PubMed  Google Scholar 

  • Rickert P, Weiner OD, Wang F, Bourne HR, Servant G (2000) Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol 10(11):466–473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    CAS  PubMed  Google Scholar 

  • Rivero S, Cardenas J, Bornens M, Rios RM (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28(8):1016–1028. doi:10.1038/emboj.2009.47

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4(1):42–50. doi:10.1038/ncb719

    CAS  PubMed  Google Scholar 

  • Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15(1):87–96. doi:10.1016/j.gde.2004.12.002

    CAS  PubMed  Google Scholar 

  • Sanchez C, Perez M, Avila J (2000) GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur J Cell Biol 79(4):252–260

    CAS  PubMed  Google Scholar 

  • Sanchez C, Tompa P, Szucs K, Friedrich P, Avila J (1996) Phosphorylation and dephosphorylation in the proline-rich C-terminal domain of microtubule-associated protein 2. Eur J Biochem 241(3):765–771

    CAS  PubMed  Google Scholar 

  • Sanchez T, Thangada S, Wu MT, Kontos CD, Wu D, Wu H, Hla T (2005) PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc Natl Acad Sci U S A 102(12):4312–4317. doi:10.1073/pnas.0409784102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T, Gundersen GG (2009) Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr Biol 19(13):1065–1074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider IC, Haugh JM (2005) Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. J Cell Biol 171(5):883–892. doi:10.1083/jcb.200509028

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwartz MA, Shattil SJ (2000) Signaling networks linking integrins and Rho family GTPases. Trends Biochem Sci 25:388–391

    CAS  PubMed  Google Scholar 

  • Servant G, Weiner OD, Neptune ER, Sedat JW, Bourne HR (1999) Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol Cell 10(4):1163–1178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sossey-Alaoui K, Li X, Ranalli TA, Cowell JK (2005) WAVE3-mediated cell migration and lamellipodia formation are regulated downstream of phosphatidylinositol 3-kinase. J Biol Chem 280(23):21748–21755. doi:10.1074/jbc.M500503200

    CAS  PubMed  Google Scholar 

  • Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, Kalman D, Bourne HR (2003) Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 160(3):375–385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stehbens S, Wittmann T (2012) Targeting and transport: how microtubules control focal adhesion dynamics. J Cell Biol 198(4):481–489. doi:10.1083/jcb.201206050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stradal T, Courtney KD, Rottner K, Hahne P, Small JV, Pendergast AM (2001) The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia. Curr Biol 11(11):891–895

    CAS  PubMed  Google Scholar 

  • Suetsugu S, Kurisu S, Oikawa T, Yamazaki D, Oda A, Takenawa T (2006) Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac. J Cell Biol 173(4):571–585. doi:10.1083/jcb.200509067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szczur K, Zheng Y, Filippi MD (2009) The small Rho GTPase Cdc42 regulates neutrophil polarity via CD11b integrin signaling. Blood 114(20):4527–4537. doi:10.1182/blood-2008-12-195164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taguchi K, Ishiuchi T, Takeichi M (2011) Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. J Cell Biol 194(4):643–656. doi:10.1083/jcb.201104124

    PubMed Central  PubMed  Google Scholar 

  • Takeda K, Sasaki AT, Ha H, Seung HA, Firtel RA (2007) Role of phosphatidylinositol 3-kinases in chemotaxis in Dictyostelium. J Biol Chem 282(16):11874–11884. doi:10.1074/jbc.M610984200

    CAS  PubMed  Google Scholar 

  • Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469–475. doi:10.1038/nmat3025

    PubMed Central  CAS  PubMed  Google Scholar 

  • Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19(1):39–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430

    CAS  Google Scholar 

  • Tu S, Wu WJ, Wang J, Cerione RA (2003) Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J Biol Chem 278(49):49293–49300

    CAS  PubMed  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389(6654):990–994. doi:10.1038/40187

    CAS  PubMed  Google Scholar 

  • Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5(8):626–634. doi:10.1038/nrm1435

    PubMed  Google Scholar 

  • van Haastert PJ, Keizer-Gunnink I, Kortholt A (2007) Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J Cell Biol 177(5):809–816. doi:10.1083/jcb.200701134

    PubMed Central  PubMed  Google Scholar 

  • Vasiliev JM, Gelfand IM, Domnina LV, Ivanova OY, Komm SG, Olshevskaja LV (1970) Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 24(3):625–640

    CAS  PubMed  Google Scholar 

  • Vicente-Manzanares M, Choi CK, Horwitz AR (2009) Integrins in cell migration–the actin connection. J Cell Sci 122(Pt 2):199–206. doi:10.1242/jcs.018564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vidali L, Chen F, Cicchetti G, Ohta Y, Kwiatkowski DJ (2006) Rac1-null mouse embryonic fibroblasts are motile and respond to platelet-derived growth factor. Mol Biol Cell 17(5):2377–2390. doi:10.1091/mbc.E05-10-0955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR (2002) Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 4:513–518

    CAS  PubMed  Google Scholar 

  • Wang S, Watanabe T, Matsuzawa K, Katsumi A, Kakeno M, Matsui T, Ye F, Sato K, Murase K, Sugiyama I, Kimura K, Mizoguchi A, Ginsberg MH, Collard JG, Kaibuchi K (2012) Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. J Cell Biol 199(2):331–345. doi:10.1083/jcb.201202041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe T, Noritake J, Kaibuchi K (2005) Regulation of microtubules in cell migration. Trends Cell Biol 15(2):76–83

    CAS  PubMed  Google Scholar 

  • Watanabe T, Noritake J, Kakeno M, Matsui T, Harada T, Wang S, Itoh N, Sato K, Matsuzawa K, Iwamatsu A, Galjart N, Kaibuchi K (2009) Phosphorylation of CLASP2 by GSK-3beta regulates its interaction with IQGAP1, EB1 and microtubules. J Cell Sci 122(Pt 16):2969–2979. doi:10.1242/jcs.046649

    CAS  PubMed  Google Scholar 

  • Waterman-Storer C, Desai A, Salmon ED (1999) Fluorescent speckle microscopy of spindle microtubule assembly and motility in living cells. Methods Cell Biol 61:155–173

    CAS  PubMed  Google Scholar 

  • Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells – over and over and over again. Nat Cell Biol 4(4):E97–E100. doi:10.1038/ncb0402-e97

    CAS  PubMed  Google Scholar 

  • Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22(1):104–115. doi:10.1016/j.devcel.2011.10.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HR (2002) A PtdInsP(3) and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4:509–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108(6):809–821

    CAS  PubMed  Google Scholar 

  • Welch HC, Coadwell WJ, Stephens LR, Hawkins PT (2003) Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546(1):93–97

    CAS  PubMed  Google Scholar 

  • Wessels D, Reynolds J, Johnson O, Voss E, Burns R, Daniels K, Garrard E, O’Halloran TJ, Soll DR (2000) Clathrin plays a novel role in the regulation of cell polarity, pseudopod formation, uropod stability and motility in Dictyostelium. J Cell Sci 113(Pt 1):21–36

    CAS  PubMed  Google Scholar 

  • Wheeler AP, Wells CM, Smith SD, Vega FM, Henderson RB, Tybulewicz VL, Ridley AJ (2006) Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 119(Pt 13):2749–2757. doi:10.1242/jcs.03024

    CAS  PubMed  Google Scholar 

  • Wickstrom SA, Lange A, Hess MW, Polleux J, Spatz JP, Kruger M, Pfaller K, Lambacher A, Bloch W, Mann M, Huber LA, Fassler R (2010) Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev Cell 19(4):574–588. doi:10.1016/j.devcel.2010.09.007

    PubMed Central  PubMed  Google Scholar 

  • Worthylake RA, Burridge K (2003) RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem 278(15):13578–13584. doi:10.1074/jbc.M211584200

    CAS  PubMed  Google Scholar 

  • Xiong Y, Huang CH, Iglesias PA, Devreotes PN (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci U S A 107(40):17079–17086. doi:10.1073/pnas.1011271107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114(2):201–214

    CAS  PubMed  Google Scholar 

  • Yamana N, Arakawa Y, Nishino T, Kurokawa K, Tanji M, Itoh RE, Monypenny J, Ishizaki T, Bito H, Nozaki K, Hashimoto N, Matsuda M, Narumiya S (2006) The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol Cell Biol 26(18):6844–6858. doi:10.1128/MCB. 00283-06

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan J, Mihaylov V, Xu X, Brzostowski JA, Li H, Liu L, Veenstra TD, Parent CA, Jin T (2012) A Gbetagamma effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis. Dev Cell 22(1):92–103. doi:10.1016/j.devcel.2011.11.007

    CAS  PubMed  Google Scholar 

  • Yip SC, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE, Neilsen PO, Goswami S, Symons M, Condeelis JS, Backer JM (2007) The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration. J Cell Sci 120(Pt 17):3138–3146. doi:10.1242/jcs.005298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A (2010) Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 18(2):226–236. doi:10.1016/j.devcel.2009.11.015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109–112. doi:10.1038/nature10632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu JA, Deakin NO, Turner CE (2009) Paxillin-kinase-linker tyrosine phosphorylation regulates directional cell migration. Mol Biol Cell 20(22):4706–4719. doi:10.1091/mbc.E09-07-0548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI (2008) The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 68(3):740–748

    CAS  PubMed  Google Scholar 

  • Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42(6):897–912. doi:10.1016/j.neuron.2004.05.011

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Etienne-Manneville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Llense, F., Etienne-Manneville, S. (2015). Front-to-Rear Polarity in Migrating Cells. In: Ebnet, K. (eds) Cell Polarity 1. Springer, Cham. https://doi.org/10.1007/978-3-319-14463-4_5

Download citation

Publish with us

Policies and ethics