Skip to main content

Immunological Synapse Formation: Cell Polarity During T Cell–APC Interaction

  • Chapter
  • First Online:
Cell Polarity 1

Abstract

Intercellular communication is essential for coordinating a successful immune response. The immunological synapse provides a platform for such communication by coupling activated lymphocytes specifically to their target cells. The formation of an IS in T cells is triggered by stimulation of the T cell antigen receptor and depends on the rapid and polarized remodeling of the cytoskeleton. This dramatic change in cell polarity is required to achieve optimal T cell activation and function. In this chapter, we will discuss the structure of the IS, how it forms, and how it contributes to T cell function during immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcazar I, Marques M, Kumar A, Hirsch E, Wymann M, Carrera AC, Barber DF (2007) Phosphoinositide 3-kinase gamma participates in T cell receptor-induced T cell activation. J Exp Med 204(12):2977–2987. doi:10.1084/jem.20070366, jem.20070366 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andres-Delgado L, Anton OM, Alonso MA (2013) Centrosome polarization in T cells: a task for formins. Front Immunol 4:191. doi:10.3389/fimmu.2013.00191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andres-Delgado L, Anton OM, Bartolini F, Ruiz-Saenz A, Correas I, Gundersen GG, Alonso MA (2012) INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells. J Cell Biol 198(6):1025–1037. doi:10.1083/jcb.201202137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ardouin L, Bracke M, Mathiot A, Pagakis SN, Norton T, Hogg N, Tybulewicz VL (2003) Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur J Immunol 33(3):790–797

    CAS  PubMed  Google Scholar 

  • Babich A, Li S, O’Connor RS, Milone MC, Freedman BD, Burkhardt JK (2012) F-actin polymerization and retrograde flow drive sustained PLCgamma1 signaling during T cell activation. J Cell Biol 197(6):775–787. doi:10.1083/jcb.201201018, jcb.201201018 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beal AM, Anikeeva N, Varma R, Cameron TO, Vasiliver-Shamis G, Norris PJ, Dustin ML, Sykulev Y (2009) Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain. Immunity 31(4):632–642. doi:10.1016/j.immuni.2009.09.004, S1074-7613(09)00416-6 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bengur AR, Robinson EA, Appella E, Sellers JR (1987) Sequence of the sites phosphorylated by protein kinase C in the smooth muscle myosin light chain. J Biol Chem 262(16):7613–7617

    CAS  PubMed  Google Scholar 

  • Bertrand F, Esquerre M, Petit AE, Rodrigues M, Duchez S, Delon J, Valitutti S (2010) Activation of the ancestral polarity regulator protein kinase C zeta at the immunological synapse drives polarization of Th cell secretory machinery toward APCs. J Immunol 185(5):2887–2894. doi:10.4049/jimmunol.1000739, jimmunol.1000739 [pii]

    CAS  PubMed  Google Scholar 

  • Bertrand F, Muller S, Roh KH, Laurent C, Dupre L, Valitutti S (2013) An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse. Proc Natl Acad Sci U S A 110(15):6073–6078. doi:10.1073/pnas.1218640110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila C. elegans and vertebrates. Curr Biol 14(16):R674–R685. doi:10.1016/j.cub.2004.08.017

    CAS  PubMed  Google Scholar 

  • Boisvert J, Edmondson S, Krummel MF (2004) Immunological synapse formation licenses CD40-CD40L accumulations at T-APC contact sites. J Immunol 173(6):3647–3652

    CAS  PubMed  Google Scholar 

  • Bubeck Wardenburg J, Pappu R, Bu JY, Mayer B, Chernoff J, Straus D, Chan AC (1998) Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9(5):607–616

    CAS  PubMed  Google Scholar 

  • Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158(7):1263–1275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bunnell SC, Kapoor V, Trible RP, Zhang W, Samelson LE (2001) Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14(3):315–329

    CAS  PubMed  Google Scholar 

  • Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202(8):1031–1036

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cannon JL, Burkhardt JK (2004) Differential roles for Wiskott-Aldrich syndrome protein in immune synapse formation and IL-2 production. J Immunol 173(3):1658–1662

    CAS  PubMed  Google Scholar 

  • Cannon JL, Labno CM, Bosco G, Seth A, McGavin MH, Siminovitch KA, Rosen MK, Burkhardt JK (2001) Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation. Immunity 15(2):249–259

    CAS  PubMed  Google Scholar 

  • Carpenter CL, Auger KR, Chanudhuri M, Yoakim M, Schaffhausen B, Shoelson S, Cantley LC (1993) Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268(13):9478–9483

    CAS  PubMed  Google Scholar 

  • Chang JT, Ciocca ML, Kinjyo I, Palanivel VR, McClurkin CE, Dejong CS, Mooney EC, Kim JS, Steinel NC, Oliaro J, Yin CC, Florea BI, Overkleeft HS, Berg LJ, Russell SM, Koretzky GA, Jordan MS, Reiner SL (2011) Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34(4):492–504. doi:10.1016/j.immuni.2011.03.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315(5819):1687–1691

    CAS  PubMed  Google Scholar 

  • Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM (2010) Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc Natl Acad Sci U S A 107(12):5545–5550. doi:10.1073/pnas.0910074107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chemin K, Bohineust A, Dogniaux S, Tourret M, Guegan S, Miro F, Hivroz C (2012) Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J Immunol 189(5):2159–2168. doi:10.4049/jimmunol.1200156

    CAS  PubMed  Google Scholar 

  • Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11(1):62–74. doi:10.1038/nrm2816, nrm2816 [pii]

    CAS  PubMed  Google Scholar 

  • Chowdhury D, Lieberman J (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 26:389–420. doi:10.1146/annurev.immunol.26.021607.090404

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L (2008) The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 85:261–301. doi:10.1016/S0070-2153(08)00810-7, S0070-2153(08)00810-7 [pii]

    CAS  PubMed  Google Scholar 

  • Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur EL, Kuhn J, Poenie M (2006) Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci U S A 103(40):14883–14888

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corre I, Gomez M, Vielkind S, Cantrell DA (2001) Analysis of thymocyte development reveals that the GTPase RhoA is a positive regulator of T cell receptor responses in vivo. J Exp Med 194(7):903–914

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costello PS, Walters AE, Mee PJ, Turner M, Reynolds LF, Prisco A, Sarner N, Zamoyska R, Tybulewicz VL (1999) The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc Natl Acad Sci U S A 96(6):3035–3040

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cote JF, Vuori K (2007) GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol 17(8):383–393. doi:10.1016/j.tcb.2007.05.001, S0962-8924(07)00157-2 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Das V, Nal B, Dujeancourt A, Thoulouze MI, Galli T, Roux P, Dautry-Varsat A, Alcover A (2004) Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20(5):577–588

    CAS  PubMed  Google Scholar 

  • de Saint Basile G, Menasche G, Fischer A (2010) Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev 10(8):568–579. doi:10.1038/nri2803

    Google Scholar 

  • Derivery E, Gautreau A (2010) Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 32(2):119–131. doi:10.1002/bies.200900123

    CAS  PubMed  Google Scholar 

  • Duitman EH, Orinska Z, Bulfone-Paus S (2011) Mechanisms of cytokine secretion: a portfolio of distinct pathways allows flexibility in cytokine activity. Eur J Cell Biol 90(6–7):476–483. doi:10.1016/j.ejcb.2011.01.010

    CAS  PubMed  Google Scholar 

  • Dupre L, Aiuti A, Trifari S, Martino S, Saracco P, Bordignon C, Roncarolo MG (2002) Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 17(2):157–166

    CAS  PubMed  Google Scholar 

  • Dustin ML (2007) Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses. Curr Opin Cell Biol 19(5):529–533. doi:10.1016/j.ceb.2007.08.003, S0955-0674(07)00120-2 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dustin ML, Chakraborty AK, Shaw AS (2010) Understanding the structure and function of the immunological synapse. Cold Spring Harb Perspect Biol 2(10):a002311. doi:10.1101/cshperspect.a002311, cshperspect.a002311 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ehrlich LI, Ebert PJ, Krummel MF, Weiss A, Davis MM (2002) Dynamics of p56lck translocation to the T cell immunological synapse following agonist and antagonist stimulation. Immunity 17(6):809–822

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2003) Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15(1):67–72

    CAS  PubMed  Google Scholar 

  • Filbert EL, Le Borgne M, Lin J, Heuser JE, Shaw AS (2012) Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells. J Immunol 188(11):5421–5427. doi:10.4049/jimmunol.1200242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finetti F, Paccani SR, Riparbelli MG, Giacomello E, Perinetti G, Pazour GJ, Rosenbaum JL, Baldari CT (2009) Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol 11(11):1332–1339. doi:10.1038/ncb1977

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer KD, Kong YY, Nishina H, Tedford K, Marengere LE, Kozieradzki I, Sasaki T, Starr M, Chan G, Gardener S, Nghiem MP, Bouchard D, Barbacid M, Bernstein A, Penninger JM (1998) Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr Biol 8(10):554–562

    CAS  PubMed  Google Scholar 

  • Fruman DA, Bismuth G (2009) Fine tuning the immune response with PI3K. Immunol Rev 228(1):253–272. doi:10.1111/j.1600-065X.2008.00750.x, IMR750 [pii]

    CAS  PubMed  Google Scholar 

  • Fu G, Hu J, Niederberger-Magnenat N, Rybakin V, Casas J, Yachi PP, Feldstein S, Ma B, Hoerter JA, Ampudia J, Rigaud S, Lambolez F, Gavin AL, Sauer K, Cheroutre H, Gascoigne NR (2011) Protein kinase C eta is required for T cell activation and homeostatic proliferation. Sci Signal 4(202):84

    Google Scholar 

  • Fukui Y, Hashimoto O, Sanui T, Oono T, Koga H, Abe M, Inayoshi A, Noda M, Oike M, Shirai T, Sasazuki T (2001) Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412(6849):826–831. doi:10.1038/35090591, 35090591 [pii]

    CAS  PubMed  Google Scholar 

  • Galandrini R, Henning SW, Cantrell DA (1997) Different functions of the GTPase Rho in prothymocytes and late pre-T cells. Immunity 7(1):163–174

    CAS  PubMed  Google Scholar 

  • Gallego MD, Santamaria M, Pena J, Molina IJ (1997) Defective actin reorganization and polymerization of Wiskott-Aldrich T cells in response to CD3-mediated stimulation. Blood 90(8):3089–3097

    CAS  PubMed  Google Scholar 

  • Garcon F, Patton DT, Emery JL, Hirsch E, Rottapel R, Sasaki T, Okkenhaug K (2008) CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 111(3):1464–1471. doi:10.1182/blood-2007-08-108050, blood-2007-08-108050 [pii]

    CAS  PubMed  Google Scholar 

  • Genot E, Cantrell DA (2000) Ras regulation and function in lymphocytes. Curr Opin Immunol 12(3):289–294, S0952-7915(00)00089-3 [pii]

    CAS  PubMed  Google Scholar 

  • Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121(3):451–463

    CAS  PubMed  Google Scholar 

  • Gomez TS, Billadeau DD (2008) T cell activation and the cytoskeleton: you can’t have one without the other. Adv Immunol 97:1–64

    CAS  PubMed  Google Scholar 

  • Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau DD (2007) Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26(2):177–190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227

    CAS  PubMed  Google Scholar 

  • Griffiths GM, Tsun A, Stinchcombe JC (2010) The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 189(3):399–406. doi:10.1083/jcb.201002027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gruber T, Thuille N, Hermann-Kleiter N, Leitges M, Baier G (2005) Protein kinase Cepsilon is dispensable for TCR/CD3-signaling. Mol Immunol 42(3):305–310

    CAS  PubMed  Google Scholar 

  • Harwood NE, Batista FD (2011) The cytoskeleton coordinates the early events of B-cell activation. Cold Spring Harb Perspect Biol 3(2), 10.1101/cshperspect.a002360

    Google Scholar 

  • Hashimoto-Tane A, Yokosuka T, Sakata-Sogawa K, Sakuma M, Ishihara C, Tokunaga M, Saito T (2011) Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34(6):919–931. doi:10.1016/j.immuni.2011.05.012, S1074-7613(11)00228-7 [pii]

    CAS  PubMed  Google Scholar 

  • Henning SW, Galandrini R, Hall A, Cantrell DA (1997) The GTPase Rho has a critical regulatory role in thymus development. EMBO J 16(9):2397–2407. doi:10.1093/emboj/16.9.2397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holsinger LJ, Graef IA, Swat W, Chi T, Bautista DM, Davidson L, Lewis RS, Alt FW, Crabtree GR (1998) Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr Biol 8(10):563–572

    CAS  PubMed  Google Scholar 

  • Holt KH, Olson L, Moye-Rowley WS, Pessin JE (1994) Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol Cell Biol 14(1):42–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huse M (2009) The T-cell-receptor signaling network. J Cell Sci 122(Pt 9):1269–1273

    CAS  PubMed  Google Scholar 

  • Huse M, Le Floc’h A, Liu X (2013) From lipid second messengers to molecular motors: microtubule-organizing center reorientation in T cells. Immunol Rev 256(1):95–106. doi:10.1111/imr.12116

    CAS  PubMed  Google Scholar 

  • Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM (2006) T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 7(3):247–255

    CAS  PubMed  Google Scholar 

  • Ikebe M, Hartshorne DJ, Elzinga M (1987) Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. Phosphorylation sites and effects of phosphorylation. J Biol Chem 262(20):9569–9573

    CAS  PubMed  Google Scholar 

  • Ikebe M, Reardon S (1990) Phosphorylation of bovine platelet myosin by protein kinase C. Biochemistry 29(11):2713–2720

    CAS  PubMed  Google Scholar 

  • Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin ML (2009) T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol 10(5):531–539. doi:10.1038/ni.1723, ni.1723 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobelli J, Chmura SA, Buxton DB, Davis MM, Krummel MF (2004) A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol 5(5):531–538. doi:10.1038/ni1065, ni1065 [pii]

    CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    CAS  PubMed  Google Scholar 

  • Jimenez C, Hernandez C, Pimentel B, Carrera AC (2002) The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by Tyr kinases and Ras. J Biol Chem 277(44):41556–41562. doi:10.1074/jbc.M205893200, M205893200 [pii]

    CAS  PubMed  Google Scholar 

  • Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10(12):854–865. doi:10.1038/nrm2804, nrm2804 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kinashi T (2005) Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev 5(7):546–559. doi:10.1038/nri1646, nri1646 [pii]

    CAS  Google Scholar 

  • King CG, Koehli S, Hausmann B, Schmaler M, Zehn D, Palmer E (2012) T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity 37(4):709–720. doi:10.1016/j.immuni.2012.06.021

    PubMed Central  CAS  PubMed  Google Scholar 

  • Komatsu S, Ikebe M (2007) The phosphorylation of myosin II at the Ser1 and Ser2 is critical for normal platelet-derived growth factor induced reorganization of myosin filaments. Mol Biol Cell 18(12):5081–5090. doi:10.1091/mbc.E06-12-1076, E06-12-1076 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krawczyk C, Oliveira-dos-Santos A, Sasaki T, Griffiths E, Ohashi PS, Snapper S, Alt F, Penninger JM (2002) Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 16(3):331–343

    CAS  PubMed  Google Scholar 

  • Ku GM, Yablonski D, Manser E, Lim L, Weiss A (2001) A PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J 20(3):457–465. doi:10.1093/emboj/20.3.457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhne MR, Lin J, Yablonski D, Mollenauer MN, Ehrlich LI, Huppa J, Davis MM, Weiss A (2003) Linker for activation of T cells, zeta-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J Immunol 171(2):860–866

    CAS  PubMed  Google Scholar 

  • Kupfer A, Mosmann TR, Kupfer H (1991) Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci U S A 88(3):775–779

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kupfer H, Monks CR, Kupfer A (1994) Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med 179(5):1507–1515

    CAS  PubMed  Google Scholar 

  • Laudanna C, Campbell JJ, Butcher EC (1996) Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271(5251):981–983

    CAS  PubMed  Google Scholar 

  • Le Floc’h A, Tanaka Y, Bantilan NS, Voisinne G, Altan-Bonnet G, Fukui Y, Huse M (2013) Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. J Exp Med 210(12):2721–2737. doi:10.1084/jem.20131324

    PubMed Central  PubMed  Google Scholar 

  • Lee KH, Dinner AR, Tu C, Campi G, Raychaudhuri S, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK, Shaw AS (2003) The immunological synapse balances T cell receptor signaling and degradation. Science 302(5648):1218–1222

    CAS  PubMed  Google Scholar 

  • Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS (2002) T cell receptor signaling precedes immunological synapse formation. Science 295(5559):1539–1542

    CAS  PubMed  Google Scholar 

  • Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9(11):860–873

    CAS  PubMed  Google Scholar 

  • Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ (1994) Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304(Pt 3):1001–1008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin J, Hou KK, Piwnica-Worms H, Shaw AS (2009) The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J Immunol 183(2):1215–1221. doi:10.4049/jimmunol.0803887, jimmunol.0803887 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Kapoor TM, Chen JK, Huse M (2013) Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc Natl Acad Sci U S A 110(29):11976–11981. doi:10.1073/pnas.1306180110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lowin-Kropf B, Shapiro VS, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140(4):861–871

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ludford-Menting MJ, Oliaro J, Sacirbegovic F, Cheah ET, Pedersen N, Thomas SJ, Pasam A, Iazzolino R, Dow LE, Waterhouse NJ, Murphy A, Ellis S, Smyth MJ, Kershaw MH, Darcy PK, Humbert PO, Russell SM (2005) A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22(6):737–748

    CAS  PubMed  Google Scholar 

  • Luxton GW, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329(5994):956–959. doi:10.1126/science.1189072

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marsland BJ, Soos TJ, Spath G, Littman DR, Kopf M (2004) Protein kinase C theta is critical for the development of in vivo T helper (Th)2 cell but not Th1 cell responses. J Exp Med 200(2):181–189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin-Cofreces NB, Robles-Valero J, Cabrero JR, Mittelbrunn M, Gordon-Alonso M, Sung CH, Alarcon B, Vazquez J, Sanchez-Madrid F (2008) MTOC translocation modulates IS formation and controls sustained T cell signaling. J Cell Biol 182(5):951–962

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Martin N, Fernandez-Arenas E, Cemerski S, Delgado P, Turner M, Heuser J, Irvine DJ, Huang B, Bustelo XR, Shaw A, Alarcon B (2011) T cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis. Immunity 35(2):208–222. doi:10.1016/j.immuni.2011.06.003, S1074-7613(11)00233-0 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Quiles N, Rohatgi R, Anton IM, Medina M, Saville SP, Miki H, Yamaguchi H, Takenawa T, Hartwig JH, Geha RS, Ramesh N (2001) WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol 3(5):484–491. doi:10.1038/35074551

    CAS  PubMed  Google Scholar 

  • Maul-Pavicic A, Chiang SC, Rensing-Ehl A, Jessen B, Fauriat C, Wood SM, Sjoqvist S, Hufnagel M, Schulze I, Bass T, Schamel WW, Fuchs S, Pircher H, McCarl CA, Mikoshiba K, Schwarz K, Feske S, Bryceson YT, Ehl S (2011) ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci U S A 108(8):3324–3329. doi:10.1073/pnas.1013285108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miletic AV, Graham DB, Sakata-Sogawa K, Hiroshima M, Hamann MJ, Cemerski S, Kloeppel T, Billadeau DD, Kanagawa O, Tokunaga M, Swat W (2009) Vav links the T cell antigen receptor to the actin cytoskeleton and T cell activation independently of intrinsic Guanine nucleotide exchange activity. PloS One 4(8):e6599. doi:10.1371/journal.pone.0006599

    PubMed Central  PubMed  Google Scholar 

  • Molina IJ, Sancho J, Terhorst C, Rosen FS, Remold-O'Donnell E (1993) T cells of patients with the Wiskott-Aldrich syndrome have a restricted defect in proliferative responses. J Immunol 151(8):4383–4390

    CAS  PubMed  Google Scholar 

  • Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86

    CAS  PubMed  Google Scholar 

  • Mor A, Campi G, Du G, Zheng Y, Foster DA, Dustin ML, Philips MR (2007) The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nat Cell Biol 9(6):713–719

    CAS  PubMed  Google Scholar 

  • Morgan MM, Labno CM, Van Seventer GA, Denny MF, Straus DB, Burkhardt JK (2001) Superantigen-induced T cell:B cell conjugation is mediated by LFA-1 and requires signaling through Lck, but not ZAP-70. J Immunol 167(10):5708–5718

    CAS  PubMed  Google Scholar 

  • Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310(5751):1191–1193

    CAS  PubMed  Google Scholar 

  • Muller AJ, Filipe-Santos O, Eberl G, Aebischer T, Spath GF, Bousso P (2012) CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37, 10.1016/j.immuni.2012.05.015

    Google Scholar 

  • Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298(3):E395–E402. doi:10.1152/ajpendo.00477.2009, ajpendo.00477.2009 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen K, Sylvain NR, Bunnell SC (2008) T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76. Immunity 28(6):810–821. doi:10.1016/j.immuni.2008.04.019, S1074-7613(08)00237-9 [pii]

    CAS  PubMed  Google Scholar 

  • Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, Tanaka Y, Shibasaki M, Kanaho Y, Sasaki T, Frohman MA, Fukui Y (2009) Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324(5925):384–387. doi:10.1126/science.1170179, 1170179 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, Burkhardt JK, Freedman BD, Billadeau DD (2006) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 16(1):24–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nolz JC, Nacusi LP, Segovis CM, Medeiros RB, Mitchell JS, Shimizu Y, Billadeau DD (2008) The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1. J Cell Biol 182(6):1231–1244

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nombela-Arrieta C, Lacalle RA, Montoya MC, Kunisaki Y, Megias D, Marques M, Carrera AC, Manes S, Fukui Y, Martinez AC, Stein JV (2004) Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 21(3):429–441. doi:10.1016/j.immuni.2004.07.012, S1074761304001992 [pii]

    CAS  PubMed  Google Scholar 

  • Ochs HD (1998) The Wiskott-Aldrich syndrome. Semin Hematol 35(4):332–345

    CAS  PubMed  Google Scholar 

  • Oliaro J, Van Ham V, Sacirbegovic F, Pasam A, Bomzon Z, Pham K, Ludford-Menting MJ, Waterhouse NJ, Bots M, Hawkins ED, Watt SV, Cluse LA, Clarke CJ, Izon DJ, Chang JT, Thompson N, Gu M, Johnstone RW, Smyth MJ, Humbert PO, Reiner SL, Russell SM (2010) Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms. J Immunol 185(1):367–375. doi:10.4049/jimmunol.0903627, jimmunol.0903627 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Penninger JM, Fischer KD, Sasaki T, Kozieradzki I, Le J, Tedford K, Bachmaier K, Ohashi PS, Bachmann MF (1999) The oncogene product Vav is a crucial regulator of primary cytotoxic T cell responses but has no apparent role in CD28-mediated co-stimulation. Eur J Immunol 29(5):1709–1718. doi:10.1002/(SICI)1521-4141(199905)29:05<1709::AID-IMMU1709>3.0.CO;2-O

    CAS  PubMed  Google Scholar 

  • Pipkin ME, Lieberman J (2007) Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 19(3):301–308. doi:10.1016/j.coi.2007.04.011, S0952-7915(07)00063-5 [pii]

    CAS  PubMed  Google Scholar 

  • Poo WJ, Conrad L, Janeway CA Jr (1988) Receptor-directed focusing of lymphokine release by helper T cells. Nature 332(6162):378–380

    CAS  PubMed  Google Scholar 

  • Quann EJ, Liu X, Altan-Bonnet G, Huse M (2011) A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat Immunol 12(7):647–654. doi:10.1038/ni.2033, ni.2033 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quann EJ, Merino E, Furuta T, Huse M (2009) Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 10(6):627–635

    CAS  PubMed  Google Scholar 

  • Reynolds LF, de Bettignies C, Norton T, Beeser A, Chernoff J, Tybulewicz VL (2004) Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J Biol Chem 279(18):18239–18246. doi:10.1074/jbc.M400257200

    CAS  PubMed  Google Scholar 

  • Reynolds LF, Smyth LA, Norton T, Freshney N, Downward J, Kioussis D, Tybulewicz VL (2002) Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways. J Exp Med 195(9):1103–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532

    CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J (1996) Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 15(10):2442–2451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakai Y, Tanaka Y, Yanagihara T, Watanabe M, Duan X, Terasawa M, Nishikimi A, Sanematsu F, Fukui Y (2013) The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation. Blood 122(3):386–393. doi:10.1182/blood-2012-12-475897

    CAS  PubMed  Google Scholar 

  • Samstag Y, John I, Wabnitz GH (2013) Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 256(1):30–47. doi:10.1111/imr.12115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanderson NS, Puntel M, Kroeger KM, Bondale NS, Swerdlow M, Iranmanesh N, Yagita H, Ibrahim A, Castro MG, Lowenstein PR (2012) Cytotoxic immunological synapses do not restrict the action of interferon-gamma to antigenic target cells. Proc Natl Acad Sci U S A 109(20):7835–7840. doi:10.1073/pnas.1116058109, 1116058109 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanui T, Inayoshi A, Noda M, Iwata E, Oike M, Sasazuki T, Fukui Y (2003) DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-theta and LFA-1, in T cells. Immunity 19(1):119–129, S1074761303001699 [pii]

    CAS  PubMed  Google Scholar 

  • Sasahara Y, Rachid R, Byrne MJ, de la Fuente MA, Abraham RT, Ramesh N, Geha RS (2002) Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol Cell 10(6):1269–1281

    CAS  PubMed  Google Scholar 

  • Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105(22):7797–7802. doi:10.1073/pnas.0800928105, 0800928105 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schnyder T, Castello A, Feest C, Harwood NE, Oellerich T, Urlaub H, Engelke M, Wienands J, Bruckbauer A, Batista FD (2011) B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity 34(6):905–918. doi:10.1016/j.immuni.2011.06.001

    CAS  PubMed  Google Scholar 

  • Sedwick CE, Morgan MM, Jusino L, Cannon JL, Miller J, Burkhardt JK (1999) TCR, LFA-1, and CD28 play unique and complementary roles in signaling T cell cytoskeletal reorganization. J Immunol 162(3):1367–1375

    CAS  PubMed  Google Scholar 

  • Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A, Sanchez-Madrid F (2004) HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20(4):417–428

    CAS  PubMed  Google Scholar 

  • Shim EK, Jung SH, Lee JR (2011) Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells. J Immunol 186(5):2926–2935. doi:10.4049/jimmunol.1001785, jimmunol.1001785 [pii]

    CAS  PubMed  Google Scholar 

  • Shim EK, Moon CS, Lee GY, Ha YJ, Chae SK, Lee JR (2004) Association of the Src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) with the p85 subunit of phosphoinositide 3-kinase. FEBS Lett 575(1–3):35–40. doi:10.1016/j.febslet.2004.07.090, S0014579304010324 [pii]

    CAS  PubMed  Google Scholar 

  • Sims TN, Soos TJ, Xenias HS, Dubin-Thaler B, Hofman JM, Waite JC, Cameron TO, Thomas VK, Varma R, Wiggins CH, Sheetz MP, Littman DR, Dustin ML (2007) Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129(4):773–785

    CAS  PubMed  Google Scholar 

  • Snapper SB, Rosen FS, Mizoguchi E, Cohen P, Khan W, Liu CH, Hagemann TL, Kwan SP, Ferrini R, Davidson L, Bhan AK, Alt FW (1998) Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9(1):81–91

    CAS  PubMed  Google Scholar 

  • Soares H, Henriques R, Sachse M, Ventimiglia L, Alonso MA, Zimmer C, Thoulouze MI, Alcover A (2013) Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. J Exp Med 210(11):2415–2433. doi:10.1084/jem.20130150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spitaler M, Emslie E, Wood CD, Cantrell D (2006) Diacylglycerol and protein kinase D localization during T lymphocyte activation. Immunity 24(5):535–546

    CAS  PubMed  Google Scholar 

  • Stinchcombe JC, Bossi G, Booth S, Griffiths GM (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15(5):751–761

    CAS  PubMed  Google Scholar 

  • Stinchcombe JC, Griffiths GM (2007) Secretory mechanisms in cell-mediated cytotoxicity. Annu Rev Cell Dev Biol 23:495–517

    CAS  PubMed  Google Scholar 

  • Stow JL, Murray RZ (2013) Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 24(3):227–239. doi:10.1016/j.cytogfr.2013.04.001

    CAS  PubMed  Google Scholar 

  • Stowers L, Yelon D, Berg LJ, Chant J (1995) Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci U S A 92(11):5027–5031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289. doi:10.1146/annurev.biophys.093008.131228

    CAS  PubMed  Google Scholar 

  • Sylvain NR, Nguyen K, Bunnell SC (2011) Vav1-mediated scaffolding interactions stabilize SLP-76 microclusters and contribute to antigen-dependent T cell responses. Sci Signal 4(163):ra14, doi:10.1126/scisignal.2001178

    PubMed  Google Scholar 

  • Tarakhovsky A, Turner M, Schaal S, Mee PJ, Duddy LP, Rajewsky K, Tybulewicz VL (1995) Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374(6521):467–470. doi:10.1038/374467a0

    CAS  PubMed  Google Scholar 

  • Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping IS, Bleackley RC, Kirchhausen T, Lieberman J (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol 12(8):770–777. doi:10.1038/ni.2050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trifari S, Sitia G, Aiuti A, Scaramuzza S, Marangoni F, Guidotti LG, Martino S, Saracco P, Notarangelo LD, Roncarolo MG, Dupre L (2006) Defective Th1 cytokine gene transcription in CD4+ and CD8+ T cells from Wiskott-Aldrich syndrome patients. J Immunol 177(10):7451–7461

    CAS  PubMed  Google Scholar 

  • Tskvitaria-Fuller I, Seth A, Mistry N, Gu H, Rosen MK, Wulfing C (2006) Specific patterns of Cdc42 activity are related to distinct elements of T cell polarization. J Immunol 177(3):1708–1720

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tybulewicz VL (2005) Vav-family proteins in T-cell signalling. Curr Opin Immunol 17(3):267–274

    CAS  PubMed  Google Scholar 

  • Vardhana S, Choudhuri K, Varma R, Dustin ML (2010) Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32(4):531–540. doi:10.1016/j.immuni.2010.04.005, S1074-7613(10)00130-5 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25(1):117–127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wabnitz GH, Nebl G, Klemke M, Schroder AJ, Samstag Y (2006) Phosphatidylinositol 3-kinase functions as a Ras effector in the signaling cascade that regulates dephosphorylation of the actin-remodeling protein cofilin after costimulation of untransformed human T lymphocytes. J Immunol 176(3):1668–1674, 176/3/1668 [pii]

    CAS  PubMed  Google Scholar 

  • Yi J, Wu X, Chung AH, Chen JK, Kapoor TM, Hammer JA (2013) Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J Cell Biol 202(5):779–792. doi:10.1083/jcb.201301004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yi J, Wu XS, Crites T, Hammer JA 3rd (2012) Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol Biol Cell 23(5):834–852. doi:10.1091/mbc.E11-08-0731, mbc.E11-08-0731 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29(4):589–601

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yokosuka T, Saito T (2010) The immunological synapse, TCR microclusters, and T cell activation. Curr Top Microbiol Immunol 340:81–107

    CAS  PubMed  Google Scholar 

  • Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6(12):1253–1262

    CAS  PubMed  Google Scholar 

  • Yu CG, Harris TJ (2012) Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid: in vitro characterization and role in epithelial development. Mol Biol Cell 23(18):3743–3753. doi:10.1091/mbc.E12-03-0196

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng R, Cannon JL, Abraham RT, Way M, Billadeau DD, Bubeck-Wardenberg J, Burkhardt JK (2003) SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J Immunol 171(3):1360–1368

    CAS  PubMed  Google Scholar 

  • Zhang J, Shehabeldin A, da Cruz LA, Butler J, Somani AK, McGavin M, Kozieradzki I, dos Santos AO, Nagy A, Grinstein S, Penninger JM, Siminovitch KA (1999) Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J Exp Med 190(9):1329–1342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang R, Alt FW, Davidson L, Orkin SH, Swat W (1995) Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374(6521):470–473. doi:10.1038/374470a0

    CAS  PubMed  Google Scholar 

  • Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92(1):83–92

    CAS  PubMed  Google Scholar 

  • Zipfel PA, Bunnell SC, Witherow DS, Gu JJ, Chislock EM, Ring C, Pendergast AM (2006) Role for the Abi/wave protein complex in T cell receptor-mediated proliferation and cytoskeletal remodeling. Curr Biol 16(1):35–46. doi:10.1016/j.cub.2005.12.024

    CAS  PubMed  Google Scholar 

  • Zyss D, Ebrahimi H, Gergely F (2011) Casein kinase I delta controls centrosome positioning during T cell activation. J Cell Biol 195(5):781–797. doi:10.1083/jcb.201106025

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, X., Huse, M. (2015). Immunological Synapse Formation: Cell Polarity During T Cell–APC Interaction. In: Ebnet, K. (eds) Cell Polarity 1. Springer, Cham. https://doi.org/10.1007/978-3-319-14463-4_11

Download citation

Publish with us

Policies and ethics