Skip to main content

Dormancy-Associated MADS-BOX Genes: A Review

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

Dormancy-associated MADS-BOX (DAM) genes encode transcription factors suspected of regulating bud dormancy in numerous perennials. This chapter discusses the functional genetics and regulation of these genes. Further, this chapter summarizes the supporting evidence for these transcription factors playing a central role in seasonal bud dormancy induction and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    Article  CAS  PubMed  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana COR15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Theissen G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Campbell MA, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 8:317–328

    Article  CAS  PubMed  Google Scholar 

  • Chen K-Y (2008) Type II MADS-box genes associated with poplar apical bud development and dormancy. Thesis, Department of Plant Sciences and Landscape Architecture. University of Maryland

    Google Scholar 

  • de Folter S, Immink RGH, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM et al (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Fujiwara S, Oda A, Yoshida R et al (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregis V, Sessa A, Colombo L, Kater MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control Trends Plant Sci 10:30–35

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed Central  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao WS, Anderson JV (2010) Characterization, expression and function of DORMANCY-ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Kudrna D, Talag J, Anderson JV, Chao WS, Wing RA, Foley ME, DoÄŸramacı M (2013) BAC library development, and clone characterization for dormancy-responsive DREB4A, DAM, and FT from leafy spurge (Euphorbia esula L.) identifies differential splicing and conserved promoter motifs. Weed Sci 61:303–309

    Article  CAS  Google Scholar 

  • Howe GT, Horvath DP, Dharmawardhana P, Priest HD, Mockler TC, Strauss SH (2014) Transcriptome changes associated with vegetative bud dormancy in Populus: chromatin modifications, transcription factors, phytohormone signaling, miRNAs, and DNA sequence motifs. Front Plant Sci (Submitted Aug 31, 2014)

    Google Scholar 

  • Hsu C-Y, Adams JP, Kim H et al (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108:10756–10761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jang S, Torti S, Coupland G (2009) Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J 60:614–625

    Article  CAS  PubMed  Google Scholar 

  • Jiménez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DG (2009) Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biol 9:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Conesa A, Llacer G, Badenes ML, Rios G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    Article  CAS  PubMed  Google Scholar 

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy associated MADS genes from the EVG locus of peach [ Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R et al (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Wang M, Meyerowitz EM (1996) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1 APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 24:3134–3141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) Evergreen peach, its inheritance and dormant behavior. J Am Soc Hortic Sci 119:789–792

    Google Scholar 

  • Rohde A, Bhalerao RP (2007). Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Storme V, Jorge V, Gaudet M, Vitacolonna N, Fabbrini F, Ruttink T, Zaina G, Marron N, Dillen S, Steenackers M, Sabatti M, Morgante M, Boerjan W, Bastien C (2011) Bud set in poplar—genetic dissection of a complex trait in natural and hybrid populations. New Phytol 189:106–121

    Article  CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao R, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy in poplar. Plant Cell 19:2370–2390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito T, Bai S, Ito A, Imai T, Nakajima I, Moriguchi T (2013) Regulatory mechanism of DORMANCY ASSOCIATED MADS-BOX gene in Japanese pear. In, Abstract and Programme Book, 5th International Plant Dormancy Symposium 2013, Auckland, New Zealand, p 44

    Google Scholar 

  • Saito T, Bai S, Imia T, Ito A, Nakajima I, Moriguchi T (2014) Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant, Cell & Environment (Article first published online: 15 DEC 2014) DOI: 10.1111/pce.12469

    Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Article  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot (Prunus mume). Plant Physiol 157:485–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I (2009). Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trainin T, Bar-Ya’akov I, Holland D (2013). ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genet Genomes 9:753–766

    Article  Google Scholar 

  • Ubi BE, Sakamoto D, Ban Y, Shimada T, Ito A, Nakajima I, Takemura Y, Tamura F, Saito T, Moriguchi T (2010) Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. J Am Soc Hortic Sci 135:174–182

    Google Scholar 

  • Wang Y, Georgi L, Reighard GL, Scorza R, Abbott, AG (2002) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered 93:352–358

    Article  CAS  PubMed  Google Scholar 

  • Wu R-M, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2012) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63:797–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhebentyayeva TN, Fan S, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Genomes 10:35–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Horvath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horvath, D. (2015). Dormancy-Associated MADS-BOX Genes: A Review. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_7

Download citation

Publish with us

Policies and ethics