Skip to main content

Flower Bud Dormancy in Prunus Species

  • Chapter
  • First Online:

Abstract

In Prunus species, developing flower buds survive winter by entering a dormant stage. However, dormancy is not just a survival strategy, but also a prerequisite for proper flowering and fruiting. In spite of its importance and the fact that cold requirements are empirically known for a number of cultivars, what occurs during dormancy at the cellular and molecular level remains somewhat of a mystery. Here we review the information available on the genetic control and the possible physiological mechanisms involved in flower bud dormancy in Prunus species. Genes involved in flower regulation appear to play some role, but the interactions between these genes is still being determined, as well as the possible epigenetic control of this process. From a physiological perspective, dormancy in vegetative buds appears to be associated with isolation both at the cell and at the organ level, and this could also be the case in developing flower buds, but this remains to be studied. Finally, characterization of biological factors impacting these processes will clearly contribute to our understanding of dormancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angel A, Song J, Dean C, Howard M (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–109

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38(5):911–921

    Google Scholar 

  • Ashworth EN (1984) Xylem development in prunus flower buds and the relationship to deep supercooling. Plant Physiol 74(4):862–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atkinson CJ, Brennan RM, Jones HG (2013) Declining chilling and its impact on temperate perennial crops. Environ Exp Bot 91:48–62. (Elsevier B.V.)

    Article  Google Scholar 

  • Badenes ML, Rı G, Leida C, Conesa A, Lla G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 6:67–80

    Google Scholar 

  • Begum S, Nakaba S, Bayramzadeh V, Oribe Y, Kubo T, Funada R (2008) Temperature responses of cambial reactivation and xylem differentiation in hybrid poplar (Populus sieboldii x P. grandidentata) under natural conditions. Tree Physiol 28(12):1813–1819

    Article  PubMed  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2007). Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata). Ann Bot 100(3): 439–447

    Article  PubMed  Google Scholar 

  • Bewleyl JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055–1066

    Article  Google Scholar 

  • Bidabé B (1965) Contrôle de l´époque de floraison du pommier par une nouvelle conception de l´action de températures. Comptes Rendus l’Academie d’Agriculture Fr 49:934–945

    Google Scholar 

  • Bielenberg DG, Wang YE, Li Z, Zhebentyayeva T, Fan S, Reighard GL et al (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4(3):495–507

    Article  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312(5776):1040–1043

    Article  PubMed  Google Scholar 

  • Bradley D (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw HD, Ceulemans R, Davis J, Stettler R (2000) Emergin model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul 19:306–313

    Article  CAS  Google Scholar 

  • Brown DS, Kotob FA (1957) Growth of flower buds of apricot, peach, and pear durin the rest period. Proc Am Soc Hortic Sci 69:158–164

    Google Scholar 

  • Brukhin V, Hernould M, Gonzalez N, Chevalier C (2003) Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex Plant Rep 15:311–320

    Google Scholar 

  • Brunner AM, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol 12;164(1):43–51.

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Sci Hortic 130(2):357–372. (Amsterdam, Elsevier B.V.)

    Article  Google Scholar 

  • Cesaraccio C, Spano D, Snyder RL, Duce P (2004) Chilling and forcing model to predict bud-burst of crop and forest species. Agric For Meteorol 126(1–2):1–13

    Article  Google Scholar 

  • Chandler W, Tufts WP (1933) Influence of the rest period on opening of buds of fruit trees in spring and on development of flower buds of peach trees. Proc Am Soc Hortic Sci 30:180–186

    Google Scholar 

  • Chourad P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11:191–238

    Article  Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35(10):1707–1728

    Article  CAS  PubMed  Google Scholar 

  • Coville FV (1920) The influence of cold in stimulating the growth of plants. Proc Natl Acad Sci U S A 6(7):434–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crabbé J (1994). Dormancy. In: Arntzen CJ, Ritter EM (eds) Encyclopedia of Agricultural Science, Vol. 1. Academic Press, San Diego, pp 597–611

    Google Scholar 

  • Dennis FG (2003) Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38(3):347–350

    Google Scholar 

  • Diaz DH, Rasmussen HP, Dennis FG (1981) Scanning electron microscope examination of flower bud differentiation in sour cherry. J Am Soc Hortic Sci 4:513–515

    Google Scholar 

  • Dorsey M (1935) Nodal development of the peach shoot as related to fruit bud formation. Proc Am Soc Hortic Sci 33:245–257

    Google Scholar 

  • Erez A, Lavee S (1971) The effect of climatic conditions on dormancy development of peach buds. 1. Temperature. Proc Am Soc Hortic Sci 96:711

    Google Scholar 

  • Eriksson ME, Moritz T (2002) Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L. x P. tremuloides Michx.). Planta 214(6):920–930

    Article  CAS  PubMed  Google Scholar 

  • Esumi T, Kitamura Y, Hagihara C, Yamane H, Tao R (2010) Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Sci Hortic 125(4):608–616. (Amsterdam, Elsevier B.V.)

    Article  CAS  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance and release. HortScience 32:623–629

    Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987) The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J Theor Biol 124:473–483

    Article  Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173(3):562–570

    Article  PubMed  Google Scholar 

  • Guimond CM, Andrews PK, Lang GA (1998) Scanning electron microscopy of floral initiation in sweet cherry. J Am Soc Hortic Sci 123:509–512

    Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177(6):523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8(11):534–540

    Article  CAS  PubMed  Google Scholar 

  • Hsu C-Y, Adams JP, Kim H, No K, Ma C, Strauss SH et al (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108(26):10756–10761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ietswaart R, Wu Z, Dean C (2012) Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet 28(9):445–453. (Elsevier Ltd)

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge Pa (2013) Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25(3):820–833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    CAS  Google Scholar 

  • Jiménez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DG (2009) Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biol 9(1):81

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiménez S, Li Z, Reighard GL, Bielenberg DG (2010a) Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol 10(1):25

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010b) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73(1–2):157–167

    Article  PubMed  Google Scholar 

  • Julian C, Herrero M, Rodrigo J (2010) Flower bud differentiation and development in fruiting and non-fruiting shoots in relation to fruit set in apricot (Prunus armeniaca L.). Trees 24(5):833–841

    Article  Google Scholar 

  • Julian C, Rodrigo J, Herrero M (2011) Stamen development and winter dormancy in apricot (Prunus armeniaca). Ann Bot 108(4):617–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Julian C, Herrero M, Rodrigo J (2014) Anther meiosis time is related to winter cold temperatures in apricot (Prunus armeniaca L.). Environ Exp Bot 100:20–25

    Article  Google Scholar 

  • Knight TA (1801) Account of some experiments on the ascent of the sap in trees. Philos Trans R Soc London 91:333–353

    Article  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2(12):1201–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Lafon-Placette C, Faivre-Rampant P, Delaunay A, Street N, Brignolas F, Maury S (2013) Methylome of DNase I sensitive chromatin in Populus trichocarpa shoot apical meristematic cells: a simplified approach revealing characteristics of gene-body DNA methylation in open chromatin state. New Phytol 197(2):416–430

    Article  CAS  PubMed  Google Scholar 

  • Lamp BM, Connell JH, Duncan RA, Viveros M, Polito VS (2001) Almond flower development: floral initiation and organogenesis. J Am Soc Hortic Sci 126(6):689–696

    Google Scholar 

  • Lang A (1957) The effect of gibberellin upon flower formation. Proc Natl Acad Sci U S A 43:709–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endodormancy, paradormancy, and ecodormancy-physiological terminology and classification for dormancy research. HortScience 22(3):371–377

    Google Scholar 

  • Legave JM, Farrera I, Almeras T, Calleja M (2008) Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. J Hortic Sci Biotechnol 83:76–84

    Google Scholar 

  • Li Z, Reighard GL, Abbott a.G, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60(12):3521–3530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luedeling E (2012) Climate change impacts on winter chill for temperate fruit and nut production: a review. Sci Hortic 144:218–29. (Amsterdam, Elsevier B.V.)

    Article  Google Scholar 

  • Luna V, Reinoso H, Lorenzo E, Bottini R, Abdala G (1991) Dormancy in peach (Prunus persica L) flower buds.2. Comparative morphology and phenology in floral and vegetative buds, and the effect of chilling and gibberellin-A3. Trees-Struct Funct 5:244–246

    Article  Google Scholar 

  • Martin GC (1991) Bud dormancy in deciduous fruit trees. In: Steward FC (ed) Plant physiol. A Treatise, vol X. Academic, San Diego, pp 183–225

    Google Scholar 

  • Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    Article  CAS  PubMed  Google Scholar 

  • Mimida N, Ureshino A, Tanaka N, Shigeta N, Sato N, Moriya-Tanaka Y et al (2011) Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization. Plant Cell Rep 30(8):1485–1492

    Article  CAS  PubMed  Google Scholar 

  • Mohamed R, Wang C-T, Ma C, Shevchenko O, Dye SJ, Puzey JR et al (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62(4):674–688

    Article  CAS  PubMed  Google Scholar 

  • Olsen JE, Junttila O, Morizt T (1995) A localized decrease of GA in shoot tips of Salix pentandra seedling precedes cessation of shoot elongation under short photoperiod. Physiol Plant 95:627–632

    Article  CAS  Google Scholar 

  • Paul LK, Rinne PL, van der Schoot C (2014) Shoot meristems of deciduous woody perennials: self-organization and morphogenetic transitions. Curr Opin Plant Biol 17:86–95

    Article  PubMed  Google Scholar 

  • Perry TO (1971) Dormancy of trees in winter. Science 171:29–36

    Article  CAS  PubMed  Google Scholar 

  • Pin Pa., Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35(10):1742–1755

    Article  CAS  PubMed  Google Scholar 

  • Ragland C (1934a) Fruit-bud differentiation in the sugar prune. Proc Am Soc Hortic Sci 32:50–51

    Google Scholar 

  • Ragland C (1934b) The development of the peach fruit, with special reference to split-pit and gumming. Proc Am Soc Hortic Sci 31:1–21

    Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. HortSci 9:331–332

    Google Scholar 

  • Rinne PL, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26(3):249–264

    Article  CAS  PubMed  Google Scholar 

  • Rinne PLH, Welling A, Schoot C Van Der (2010) Perennial life style of Populus: dormancy cycling and overwintering. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus. Springer, New York, pp 171–200

    Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J et al (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-Inducible 1,3- -Glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23(1):130–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ríos G, Tadeo FR, Leida C, Badenes ML (2013) Prediction of components of the sporopollenin synthesis pathway in peach by genomic and expression analyses. BMC Genomics 14:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Ríos G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:247

    PubMed Central  PubMed  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223

    Article  CAS  PubMed  Google Scholar 

  • Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108(3):485–498

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T et al (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese Apricot. Plant Physiol 157(1):485–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sedgley M, Griffin AR (1989) Sexual reproduction of tree crops. Academic, London, p 392

    Google Scholar 

  • Seeley PSD, Seeley SD, Dennis FG, Lang GA (1994) Workshop Papers and Authors Dormancy—The Black Box. 29(11):1994

    Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song J, Angel A, Howard M, Dean C (2012) Vernalization-a cold-induced epigenetic switch. J Cell Sci 125:3723–3731

    Article  CAS  PubMed  Google Scholar 

  • Sterling C (1964) Comparative morphology of carpel in Rosaceae. 1. Prunoideae-Prunus. Am J Bot 51(1):36–44

    Article  Google Scholar 

  • Sung S, Amasino RM (2005) Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol 56(1):491–508

    Article  CAS  PubMed  Google Scholar 

  • Tukey (1989) Growth factors and plant regulants in the manipulation of plant development and cropping in tree fruits. In: Wright CJ (ed) Manipulation of fruiting. pp 343–361

    Google Scholar 

  • Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    Article  CAS  PubMed  Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Annu Rev Plant Physiol 15:185–224

    Article  CAS  Google Scholar 

  • Vining KJ, Pomraning KR, Wilhelm LJ, Priest HD, Pellegrini M, Mockler TC et al (2012) Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genomics 13(1):27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang SY, Jiao HJ, Faust M (1991) Changes in metabolic enzyme activities during thidiazuron-induced lateral budbreak of apple. HortScience 26(2):171–173

    CAS  Google Scholar 

  • Warriner CL, Johnson JL, Smith MW (1985) Comparison of the initiation and development of Redhaven peach flowers in standard and meadow orchard trees. J Am Soc Hortic Sci 110(3):379–383

    Google Scholar 

  • Weinberger JH (1950) Chilling requirements of peach varieties. Proc Am Soc Hortic Sci 56:122–128

    Google Scholar 

  • Welling A, Kaikuranta P, Rinne P (1997) Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol Plant 100(1):119–125

    Article  CAS  Google Scholar 

  • Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. J Am Soc Hortic Sci 133(5):708–16

    Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62(10):3481–3488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministerio de Ciencia e Innovación (MICINN)-FEDER [AGL 12621-C02-01, AGL 2012-40239], INIA (RF2011-00029-CO03-01-02) and Gobierno de Aragón [group A43]. E.F. was supported by a doctoral fellowship [FPI BES-2010-037992] from MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Fadón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fadón, E., Herrero, M., Rodrigo, J. (2015). Flower Bud Dormancy in Prunus Species. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_6

Download citation

Publish with us

Policies and ethics