Skip to main content

Recent Advances in Genetics and Molecular Control of Bud Dormancy in Pipfruits

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

Dormancy is an adaptive mechanism that enables plants to survive unfavorable climatic conditions. This complex process is characterized by the cessation of growth from meristems, which is often accompanied by winter bud set, extensive metabolic remodeling, an acquired high tolerance to cold and/or water deficit and, in deciduous trees, by leaf senescence and abscission. Temperate fruit crops, such as apple and pear, have great economic importance worldwide and their production is closely related to bud dormancy, given that a well-adjusted dormancy cycle is crucial for the achievement of their full genetic potential. These fruits are often classified as pipfruits because of their small hard seeds (pips) in the center of the fruit. Unlike other temperate fruit crops, such as peach and Japanese apricot, pipfruits have peculiarities related to bud dormancy, because instead of being triggered by photoperiodic changes the main regulator of this process is exposure to low temperatures. However, the recent bud dormancy models proposed to peach and poplar only takes into account the research performed in these species. Therefore, the current scenario of genetics and molecular control of bud dormancy in pipfruits is reviewed here. Progress on the identification of heritable components and candidate genes influencing the dormancy process is discussed, as well as the tools available to devise strategies for genetic and genomic analysis of pipfruits.

Authors Vítor da Silveira Falavigna and Diogo Denardi Porto contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alencar S, Silva-Junior O, Togawa R, Costa M, Revers L, Pappas G (2011) SNP discovery in apple cultivars using next generation sequencing. BMC Proc 5(Suppl 7):P42

    Article  PubMed Central  Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angel A, Song J, Dean C, Howard M (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–108

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. Hortscience 38(5):911–921

    Google Scholar 

  • Artlip TS, Wisniewski ME, Norelli JL (2014) Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth. Environ Exp Bot 106:79–86

    Article  CAS  Google Scholar 

  • Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T (2013) Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy. Plant Cell Physiol 54(7):1132–1151

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL et al (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4(3):495–507

    Article  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Bradshaw H, Stettler R (1995) Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973

    CAS  PubMed  Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Sci Hort 130:357–372

    Article  Google Scholar 

  • Celton J-M, Chagné D, Tustin SD, Terakami S, Nishitami C, Yamamoto T, Gardiner SE (2009) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2:182

    Article  PubMed Central  PubMed  Google Scholar 

  • Celton J-M, Martinez S, Jammes M-J, Bechti A, Salvi S, Legave J-M et al (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392

    Article  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C et al (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7(2):e31745

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H et al (2014) The draft genome sequence of European Pear (Pyrus communis L. ‘Bartlett’). PLoS One 9(4):e92644

    Article  PubMed Central  PubMed  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035

    Article  CAS  Google Scholar 

  • Dennis FG (1987) Two methods for studying rest: temperature alternation and genetic analysis. Hortscience 22:820–824

    Google Scholar 

  • Doğramaci M, Horvath DP, Chao WS, Foley ME, Christoffers MJ, Anderson JV (2010) Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. Plant Mol Biol 73:207–226

    Article  PubMed  Google Scholar 

  • Falavigna VS, Porto DD, Buffon V, Margis-Pinheiro M, Pasquali G, Revers LF (2014) Differential transcriptional profiles of dormancy-related genes in apple buds. Plant Mol Biol Rep 32:796–813

    Article  CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D et al (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185(4):917–930

    Article  PubMed  Google Scholar 

  • FAO (2012) Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en/. Accessed 13 May 2014

  • Faria DA, Mamani, EMC, Pappas GJ, Grattapaglia D (2011) Genotyping systems of Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet Genomes 7:63–77

    Article  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128(3):217–226

    Article  CAS  Google Scholar 

  • Flachowsky H, Peil A, Hanke M, Tränkner C, Szankowski I et al (2012) Functional characterization of two antagonistic acting flowering genes in apple Malus x domestica Borkh. Acta Hort 929:351–356

    Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Frewen BE, Chen TH, Howe GT, Davis J, Rohde A, Boerjan W et al (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154(2):837–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia, D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    Google Scholar 

  • Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL et al (2013) Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol 14:R56

    Article  PubMed Central  PubMed  Google Scholar 

  • Hauagge R, Cummins JN (1991) Genetics of length of dormancy period in Malus vegetative buds. J Am Soc Hortic Sci 116(1):121–126

    Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  CAS  PubMed  Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73(1–2):169–179

    Article  CAS  PubMed  Google Scholar 

  • Howe GT, Saruup P, Davies J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage and winter survival in an F2 family of hybrid poplars. Theor Appl Genet 101:632–642

    Article  Google Scholar 

  • Hsu C, Adams JP, Kim H, No K, Ma C, Strauss SH et al (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA 108(26):10756–10761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T et al (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184

    Article  CAS  Google Scholar 

  • Ito A, Sakamoto D, Moriguchi T (2012) Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci Hortic 144:187–194

    Article  CAS  Google Scholar 

  • Ito A, Sugiura T, Sakamoto D, Moriguchi T (2013) Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season. Tree Physiol 33:398–408

    Article  PubMed  Google Scholar 

  • Jackson JE (2003) Biology of apples and pears. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167

    Article  PubMed  Google Scholar 

  • Kellerhals M (2009) Introduction to apple (Malus x domestica). In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, p 73–84

    Chapter  Google Scholar 

  • Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I et al (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 953–1028

    Google Scholar 

  • Korban SS, Tartarini S (2009) Apple structural genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, p 85–119

    Chapter  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y et al (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.). Plant Cell Physiol (Apr) 51(4):561–575

    Article  CAS  PubMed  Google Scholar 

  • Labuschagné IF, Louw JH, Schmidt K, Sadie A (2002) Genetic variation in chilling requirement in apple progeny. J Am Soc Hort Sci 127:663–672

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endodormancy, paradormancy, and ecodormancy—physiological terminology and classification for dormancy research. Hortscience 22:371–377

    Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar dependent manner. New Phytol 193:67–80

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60(12):3521–3530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu G, Li W, Zheng P, Xu T, Chen L, Liu D et al (2012) Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-SEq. BMC Genomics 13:700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10(8):565–577

    Article  CAS  PubMed  Google Scholar 

  • Marafon AC, Citadin I, Amarante L, Herter FG, Hawerroth FJ (2011) Chilling privation during dormancy period and carbohydrate mobilization in Japanese pear trees. Sci Agric 68(4):462–468

    Article  CAS  Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. P Natl Acad Sci U S A 111(16):6092–6097

    Article  CAS  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J et al (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M et al (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One 8(10):e77022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myles S (2013) Improving fruit and wine: what does genomics have to offer? Trends Genet 29(4):190–196

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122

    Article  CAS  PubMed  Google Scholar 

  • Nishitami C, Saito T, Ubi BE, Shimuzi T, Itai A, Saito T et al (2012) Transcriptome analysis of Pyrus pyrifolia leaf buds during transition from endodormancy to ecodormancy. Sci Hortic 147:49–55

    Article  Google Scholar 

  • Olsen J, Junttila O, Nilsen J (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12(6):1339–1350

    Article  CAS  Google Scholar 

  • Palmer J (2012) Apples and pears—Pipfruit in New Zealand. In: Te Ara—the Encyclopedia of New Zealand [updated 2002 Jul 13]. http://www.TeAra.govt.nz/en/apples-and-pears. Accessed 12 May 2014

  • Porto DD, Bruneau M, Perini P, Anzanello R, Renou J, dos Santos HP et al. (2015) Transcription profilling of the chilling requeriment for budbreak in apples: a putative role for FLC-like genes. J Exp Bot. doi:10.1093/jxb/erv061

    Google Scholar 

  • Rinne PL, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    Article  CAS  PubMed  Google Scholar 

  • Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito T, Bai S, Ito A, Sakamoto D, Saito T, Ubi BE et al (2013) Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol 33:654–667

    Article  CAS  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T et al (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese Apricot. Plant Physiol 157(1):485–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One 7(7):e40715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun W, Zhang Y, Le W, Zhang H (2009) Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.). Front Agric China 3(1):67–74

    Article  Google Scholar 

  • Takemura Y, Kuroki K, Matsumoto K, Ban Y, Moriguchi T, Tamura F (2013) Identification and expression analysis of candidate genes related to endodormancy induction and breaking in Pyrus pyrifolia. Sci Hortic 155:65–71

    Article  CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke M, Fladung M et al (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Article  PubMed  Google Scholar 

  • Troggio M, Gleave A, Salvi S, Chagné D, Cestaro A, Kumar S et al (2012) Apple, from genome to breeding. Tree Genet Genomes 8(3):509–529

    Article  Google Scholar 

  • Troggio M, Surbanovski N, Bianco L, Moretto M, Giongo L, Banchi E et al (2013) Evaluation of SNP data from the Malus infinium array identifies challenges for genetic analysis of complex genomes of polyploid origin. PLoS One 8(6):e67407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ubi B, Sakamoto D, Ban Y, Shimada Y, Ito A, Nakajima I et al (2010) Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese Pear. J Am Soc Hort Sci 135(2):174–182

    Google Scholar 

  • van der Schoot C Rinne PL (2011) Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci 180:120–131

    Article  PubMed  Google Scholar 

  • van Dyk MM Soeker MK Labuschagne IF Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus x domestica Borkh.). Tree Genet Genomes 6(3):489–502

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Wenzel S, Flachowsky H, Hanke M (2013) The Fast-track breeding approach can be improved by heat induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus x domestica Borkh.). Plant Cell Tiss Org Cult 115:127–137

    Article  CAS  Google Scholar 

  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus x domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983

    Article  CAS  PubMed  Google Scholar 

  • Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2012) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63:797–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu RM, Wang T, McGie T, Voogd C, Allan AC, Hellens RP et al (2014) Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. J Exp Bot. 65:4985–4995. doi:10.1093/jxb/eru264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto T, Chevreau E (2009) Pear genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, p 163–186

    Chapter  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y et al (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    CAS  PubMed  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Sasaki R, Tao R (2011) Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci Hortic 129:844–848

    Article  CAS  Google Scholar 

  • Zhebentyayeva TN, Fan S, Chandra A, Bielenberg DG, Reighard GL, Okie WR et al (2014) Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Genomes 10(1):35–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Fernando Revers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Falavigna, V., Porto, D., Silveira, C., Revers, L. (2015). Recent Advances in Genetics and Molecular Control of Bud Dormancy in Pipfruits. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_5

Download citation

Publish with us

Policies and ethics