Skip to main content

Dormancy Behaviors and Underlying Regulatory Mechanisms: From Perspective of Pathways to Epigenetic Regulation

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

Temperate perennials exploit dormancy as one strategy to survive long-term environmental stresses. As the current trend in global warming continues, many regions are experiencing warmer winters that fail to provide sufficient chilling temperature for dormancy release, impacting fruit tree productivity and plant ecology. Thus, understanding dormancy and its regulation is important for developing breeding strategies to mitigate the impact of rapidly changing global climates. In this chapter, we extensively review the distinct dormancy types in the context of inducing factors. We also examine the different forms or appearance of dormancy in the context of plant architecture, growth habit, life cycle, and developmental programming. Given that chilling temperature is critical for both dormancy and vernalization, we discuss the dual roles of chilling in the regulation of dormancy release and developmental programming, and its unique properties (e.g., slow action, fixable, and additive) relevant to epigenetic regulatory features. In addition, we assess the different flower regulatory pathways and delineate general principles of how vernalization and dormancy hijack, derail, and transduce specific pathways to arrest and then release growth and development in response to environmental changes. Finally, we compare and examine how vernalization and dormancy are regulated at the molecular level with particular emphasis on epigenetic modification, and highlight similarities and differences in their regulation, thus providing a perspective for future dormancy research. The aim of this review is to offer readers a unique insight into the regulation of dormancy, with particular emphasis on regulatory pathways and epigenetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador A, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE (2010) Flower development. Arabidopsis Book 8:e0127

    PubMed Central  PubMed  Google Scholar 

  • Amasino R (2004) Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16:2553–2559

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson JV, Gesch RW, Jia Y, Chao WS, Horvath DP (2005) Seasonal shift in dormancy status, carbohydrate metabolism and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28:1567–1578

    CAS  Google Scholar 

  • Angel A, Song J, Dean C, Howard MA (2011) Polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–108

    CAS  PubMed  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911–921

    Google Scholar 

  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    CAS  PubMed  Google Scholar 

  • Berg A, Meza TJ, Mahić M, Thorstensen T, Kristiansen K, Aalen RB (2003) Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Res 31:5291–5304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berrie AMM (1966) The effect of temperature and light on the germination of lettuce seeds. Physiol Plant 19:429–436

    Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the peach evergrowing mutant. J Hered 95:436–444

    CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Gen 4:495–507

    Google Scholar 

  • Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171

    CAS  PubMed  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Boonekamp PM, Beijersbergen JCM, Franssen JM (1990) The development of flowering assays for cold-treated tulip bulbs. Acta Hortic 266:177–181

    Google Scholar 

  • Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221

    CAS  PubMed  Google Scholar 

  • Brennan T, Willemsen R, Rudd T, Frenkel C (1978) Interaction of oxygen and ethylene in the release of ragweed seeds from dormancy. Bot Gazette 139:46–49

    CAS  Google Scholar 

  • Brock RD, Davidson JL (1994) 5-Azacytidine and gamma-rays partially substitute for cold treatment in vernalizing winter-wheat. Environ Exp Bot 34:195–199

    CAS  Google Scholar 

  • Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci U S A 90:287–291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell MA, Suttle JC, Sell TW (1996) Changes in cell cycle status and expression of p34cdc2 kinase during potato tuber meristem dormancy. Physiol Plant 98:743–752

    CAS  Google Scholar 

  • Campbell M, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 8:317–328

    CAS  PubMed  Google Scholar 

  • Chao WS, Serpe MD, Anderson JV, Gesch RW, Horvath DP (2006) Sugars, hormones and environment affect the dormancy status in underground adventitious buds of leafy spurge (Euphorbia esula). Weed Sci 54:59–68

    CAS  Google Scholar 

  • Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS (2012) Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22:736–748

    CAS  PubMed  Google Scholar 

  • Coleman WK (1987) Dormancy release in potato tubers: a review. Amer Potato J 64:57–68

    Google Scholar 

  • Cottignies A (1986) The hydrolisis of starch as related to the interruption of dormancy in the ash bud. J Plant Physiol 123:381–388

    CAS  Google Scholar 

  • Davis SJ (2002) Photoperiodism: the coincidental perception of the season. Curr Biol 12:R841–843

    CAS  PubMed  Google Scholar 

  • Dennis ES, Bilodeau P, Burn J, Finnegan EJ, Genger R, Helliwell C, Kang BJ, Sheldon CC, Peacock WJ (1998) Methylation controls the low temperature induction of flowering in Arabidopsis. Symp Soc Exp Biol 51:97–103

    CAS  PubMed  Google Scholar 

  • Dogramaci M, Horvath DP, Christoffers MJ, Anderson JV (2011) Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds. Funct Integr Genomics 11:611–626

    CAS  PubMed  Google Scholar 

  • Dole JM (2003) Research approaches for determining cold requirements for forcing and flowering of geophytes. HortScience 38:341–346

    Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18:639–650

    PubMed Central  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Jones B, Li ZG, Lelievre JM, Pech JC, Latche A (2003) Isolation and characterization of four ethylene perception elements and their expression during ripening in pears with/without cold storage. J Exp Bot 54:1615–1626

    CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Jones B, Gentzbittel L, Lelievre JM, Pech JC, Latche A (2004) Differential regulation of ACC synthase genes in cold-dependent and independent ripening in pear fruit. Plant Cell Environ 27:1197–1210

    CAS  Google Scholar 

  • Erez AG, Lavee S (1971) The effect of climatic conditions on dormancy development of peach buds. Proc Amer Soc Hort Sci 96:711–714

    Google Scholar 

  • Erez A, Couvillon A, Hendershott CH (1979a) Quantitative chilling enhancement and negation in peach buds by high temperatures in a daily cycle. J Amer Soc Hort Sci 104:536–540

    Google Scholar 

  • Erez A, Couvillon A, Hendershott CH (1979b) The effect of cycle length on chilling negation by high temperatures in dormant peach leaf buds. J Amer Soc Hort Sci 104:573–576

    Google Scholar 

  • Erez A, Faust M, Line MJ (1998) Changes in water status in peach buds on induction, development and release from dormancy. Sci Hortic 73:111–123 (Amsterdam)

    Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    PubMed  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience 32:623–629

    Google Scholar 

  • Finnegan EJ, Dennis ES (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17:1978–1983

    CAS  PubMed  Google Scholar 

  • Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES (1998) DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci U S A 95:5824–5829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    CAS  PubMed  Google Scholar 

  • Greb T, Mylne JS, Crevillen P, Geraldo N, An HL, Gendall AR, Dean C (2007) The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr Biol 17:73–78

    CAS  PubMed  Google Scholar 

  • Gregis V, Sessa A, Dorca-Fornell C, Kater MM (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J 60:626–637

    CAS  PubMed  Google Scholar 

  • Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S, Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L, Coupland G, Kater MM (2013) Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol 14:R56

    PubMed Central  PubMed  Google Scholar 

  • Halaly T, Pang X, Batikoff T, Crane O, Keren A, Venkateswari J, Ogrodovitch A, Sadka A, Lavee S, Or E (2008) Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta 228:79–88

    CAS  PubMed  Google Scholar 

  • Hansen E, Olsen JE, Junttila O (1999) Gibberellins and subapical cell divisions in relation to bud set and bud break in Salix pentandra. J Plant Growth Regul 18:167–170

    CAS  PubMed  Google Scholar 

  • He YH (2009) Control of the transition to flowering by chromatin modifications. Mol Plant 2:554–564

    CAS  PubMed  Google Scholar 

  • Heide OM (1993) Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol Plant 89:187–191

    Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    CAS  PubMed  Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    CAS  PubMed  Google Scholar 

  • Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hillman JR (1984) Apical dominance. In: Wilkins MB (ed) Advanced plant physiology. Pitmann, London, pp. 127–148

    Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    CAS  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    CAS  PubMed  Google Scholar 

  • Hsu CY, Liu YX, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1041–1028

    Google Scholar 

  • Jang S, Torti S, Coupland G (2009) Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J 60:614–625

    CAS  PubMed  Google Scholar 

  • Jian LC, Li PH, Sun LH, Chen THH (1997) Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. J Exp Bot 48:1195–1207

    CAS  Google Scholar 

  • Jiménez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DG (2009) Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biol 9:81

    PubMed Central  PubMed  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167

    PubMed  Google Scholar 

  • Julian C, Rodrigo J, Herrero M (2011) Stamen development and winter dormancy in apricot (Prunus armeniaca). Ann Bot 108:617–625

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kane NA, Danyluk J, Tardif G, Ouellet F, Laliberte JF, Limin AE, Fowler DB, Sarhan, F (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138:2354–2363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kane NA, Agharbaoui Z, Diallo AO, Adam H, Tominaga Y, Ouellet F, Sarhan F (2007) TaVRT2 represses transcription of the wheat vernlization gene TaVRT1. Plant J 51:670–680

    CAS  PubMed  Google Scholar 

  • Karlberg A, Englund M, Petterle A, Molnar G, Sjödin A, Bakó L, Bhalerao RP (2010) Analysis of global changes in gene expression during activity-dormancy cycle in hybrid aspen apex. Plant Biotechnol 27:1–16

    CAS  Google Scholar 

  • Kester DE (1969) Pollen effects on chilling requirements of almond and almond hybrid seeds. J Am Soc Hort Sci 94:318–321

    Google Scholar 

  • Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36:167–171

    CAS  PubMed  Google Scholar 

  • Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    CAS  PubMed  Google Scholar 

  • Kozarewa I, Ibáñez C, Johansson M, Ogren E, Mozley D, Nylander E, Chono M, Moritz T, Eriksson ME (2010) Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus. Plant Mol Biol 73:143–156

    CAS  PubMed  Google Scholar 

  • Kretzschmar A, Brighenti L, Rufato L, Pelizza T, Silveira F, Miquelutti D, Faoro I (2011) Chilling requirement for dormancy bud break in European pear. Acta Hortic 909:85–87

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Laude HM (1953) The nature of summer dormancy in perennial grasses. Bot Gaz 114:282–292

    Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    PubMed Central  CAS  PubMed  Google Scholar 

  • Le Nard M, De Hertogh AA (1993) Bulb growth and development and flowering. In: De Hertogh A, Le Nard M (eds) The physiology of flower bulbs. Elsevier, Amsterdam, pp. 29–43

    Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Gene Dev 14:2366–2376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Gene Dev 21:397–402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Ryu HS, Chung KS, Posé D, Kim S, Schmid M, Ahn JH (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors Science 342:628–632

    CAS  PubMed  Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012a) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    CAS  PubMed  Google Scholar 

  • Leida C, Conejero A, Arbona V, Gómez-Cadenas A, Llácer G, Badenes ML, Ríos G (2012b) Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression. PLoS ONE 7:e35777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120

    CAS  PubMed  Google Scholar 

  • Li ZG, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Koornneef M, Soppe WJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444

    PubMed Central  PubMed  Google Scholar 

  • Luna V, Lorenzo E, Reinoso H, Tordable MC, Abdala G, Pharis RP, Bottini R (1990) Dormancy in peach (Prunus persica L.) flower buds. I. Floral morphogenesis and endogenous gibberellins at the end of the dormancy period. Plant Physiol 93:20–25

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luna V, Reinoso H, Lorenzo E, Bottini R, Abdala G (1991) Dormancy in peach (Prunus persica L.) flower buds. II. Comparative morphology and phenology in floral and vegetative buds, and the effect of chilling and gibberellin A3. Trees 5:244–246

    Google Scholar 

  • Luna V, Soriano MD, Bottini R, Sheng CX, Pharis RP (1993) Dormancy in peach (Prunus persica L.) flower buds. III. Levels of endogenous gibberellins, abscisic acid, indole-3-acetic acid, and naringenin during dormancy of peach flower buds. Acta Hortic 329:264–267

    Google Scholar 

  • March-Diaz R, Garcia-Dominguez M, Florencio FJ, Reyes JC (2007) SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6. Plant Physiol 143:893–901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    CAS  PubMed  Google Scholar 

  • Metzger JD (1996) A physiological comparison of vernalization and dormancy chilling requirement. In: Lang GA (ed) Plant dormancy: physiology, biochemistry, and molecular biology. CABI, New York, pp 147–155

    Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13:935–942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137:149–156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molmann JA, Asante DKA, Jensen JB, Krane MN, Ernstsen A, Junttila O, Olsen JE (2005) Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation, but not dormancy in PHYA overexpressors and wild-type of hybrid aspen. Plant Cell Environ 28:1579–1588

    Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    CAS  PubMed  Google Scholar 

  • Moser BC, Hess CE (1968) The physiology of tuberous root development in dahlia. Proc Am Soc Hort Sci 93:595–603

    Google Scholar 

  • Nee CC (1986) Overcoming bud dormancy with hydrogen cyanamide. Timingg and mechanisms. Dissertation, Oregon State University

    Google Scholar 

  • Nitsch JP (1957) Photoperiodism in woody plants. Proc Am Soc Hort Sci 70:526–544

    CAS  Google Scholar 

  • Ofir M (1986) Seasonal changes in the response to temperature of summer-dormant Poa bulbosa L. bulbs. Ann Bot 58:81–89

    Google Scholar 

  • Ofir M, Kigel J (1999) Photothermal control of the imposition of summer dormancy in Poa bulbosa, a perennial grass geophyte. Physiol Plant 105:633–640

    CAS  Google Scholar 

  • Ofir M, Kigel J (2007) Regulation of summer dormancy by water deficit and ABA in Poa bulbosa ecotypes. Ann Bot 99:293–299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okubo H (2000) Growth cycle and dromancy in plants. In: Viemont JD, Crabble J (eds) Dormancy in plants from whole plant behaviour to cellular control. CABI Publishing, Wallingford, pp. 1–22

    Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A 106:8386–8391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pasternak G, Powell LE (1980) Chilling requirements of apple seeds from cultivars having low and high chilling requirements for shoot growth. HortScience 15:408

    Google Scholar 

  • Pazhouhandeh M, Molinier J, Berr A, Genschik P (2011) MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc Natl Acad Sci USA 108:3430–3435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    CAS  PubMed  Google Scholar 

  • Peng MS, Cui YH, Bi YM, Rothstein SJ (2006) AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J 46:282–296

    CAS  PubMed  Google Scholar 

  • Phillips R, Rix M (1989) Shrubs. Pan Books, London

    Google Scholar 

  • Purvis ON, Gregory FG (1952) Studies in vernalization of cereals. XII. The reversibility by high temperature of the vernalized condition in petkus winter rye. Ann Bot 16:1–21

    Google Scholar 

  • Quamme HA, Su WA, Veto LJ (1995) Anatomical features facilitating supercooling of the flower within the dormant peach flower bud. J Am Soc Hortic Sci 120:814–822

    Google Scholar 

  • Reinoso H, Luna V, Daurfa C, Pharis R, Bottini R (2002a) Dormancy in peach (Prunus persica) flower buds. VI. Effects of gibberellins and an acylcyclohexanedione (trinexapac-ethyl) on bud morphogenesis in field experiments with orchard trees and on cuttings. Can J Bot 80:664–674

    CAS  Google Scholar 

  • Reinoso H, Luna V, Pharis RP, Bottini R (2002b) Dormancy in peach (Prunus persica) flower buds. V. Anatomy of bud development in relation to phenological stage. Can J Bot 80:656–663

    Google Scholar 

  • Rinne PLH, Hänninen H, Kaikuranta P, Jalonen JE, Repo T (1997) Freezing exposure releases bud dormancy in Betula pubescens and B. pendula. Plant Cell Environ 20:1199–1204

    Google Scholar 

  • Rinne PLH, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:259–264

    Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C (2011) Chilling of dormant buds hyperiduced FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ríos G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:247

    PubMed Central  PubMed  Google Scholar 

  • Rodriguez-A J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) Evergreen peach, its inheritance and dormant behavior. J Am Soc Hortic Sci 119:789–792

    Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    CAS  PubMed  Google Scholar 

  • Rohde A, Ruttink T, Hostyn V, Sterck L, Van Driessche K, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot 58:4047–4060

    CAS  PubMed  Google Scholar 

  • Rohde A, Bastien C, Boerjan W (2011) Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiol 31:472–482

    PubMed  Google Scholar 

  • Rossi R (1990) Guía de Bulbos (in Spanish). Grijalbo, Barcelona

    Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saito T, Bai S, Ito A, Sakamoto D, Saito T, Ubi BE, Imai T, Moriguchi T (2013) Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol 33:654–667

    CAS  PubMed  Google Scholar 

  • Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ (2006) FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biol 6:10

    PubMed Central  PubMed  Google Scholar 

  • Saniewski M, Kawa-Miszcak L, Wegrzynowicz-Lesiak E, Okubo H (2000) Role of ABA, gibberellins and auxin in dormancy and dormancy release of tulip bulbs. In: Viemont JD, Crabble J (eds) Dormancy in plants from whole plant behaviour to cellular control. CABI Publishing, Wallingford, pp. 227–244

    Google Scholar 

  • Santamaría ME, Hasbún R, Valera MJ, Meijón M, Valledor L, Rodríguez JL, Toorop PE, Cañal MJ, Rodríguez R (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1369

    PubMed  Google Scholar 

  • Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498

    PubMed Central  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot (Prunus mume). Plant Physiol 157:485–497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scalabrelli G, Couvillon GA (1986) The effect of temperature and bud type on rest composition and the GDH oC requirement for budbreak in “Redhaven” peach. J Amer Soc Hort Sci 111:537–540

    Google Scholar 

  • Scebba F, De Bastiani M, Bernacchia G, Andreucci A, Galli A, Pitto L (2007) PRMT11: a new Arabidopsis MBD7 protein partner with arginine methyltransferase activity. Plant J 52:210–222

    CAS  PubMed  Google Scholar 

  • Schmitz RJ, Hong L, Fitzpatrickt KE, Amasino RM (2007) DICER-LIKE 1 and DICER-LIKE 3 Redundantly Act to promote flowering via repression of FLOWERING LOCUS C in Arabidopsis thaliana. Genetics 176:1359–1362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci USA 105:411–416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ (2008) Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci USA 105:2214–2219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K (2009) A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J 58:668–681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinomura T, Nagatani A, Chory J, Furuya M (1994) The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104:363–371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shirazi AM (1992) Relationship of ‘near-lethal’ stress on dormancy, cold hardiness and recovery of red-osier dogwood. Dissertation, Oregon State University

    Google Scholar 

  • Siller-Cepeda JH, Fuchigami LH, Chen THH (1992) Glutathione content in peach buds in relation to development and release of rest. Plant Cell Physiol 33:867–872

    CAS  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol 13:594–603

    PubMed Central  PubMed  Google Scholar 

  • Springer NM, Kaeppler SM (2005) Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins. Plant Physiol 138:92–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    CAS  PubMed  Google Scholar 

  • Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with Poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One 7:e40715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stangeland B, Rosenhave EM, Winge P, Berg A, Amundsen SS, Karabeg M, Mandal A, Bones AM, Grini PE, Aalen RB (2009) AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana. Physiol Plant 136:110–126

    CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Sung SB, Amasino RM (2004a) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    CAS  PubMed  Google Scholar 

  • Sung SB, Amasino RM (2004b) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    CAS  PubMed  Google Scholar 

  • Swiezewski S, Liu FQ, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    CAS  PubMed  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    CAS  PubMed  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    CAS  PubMed  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudoresponse regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    CAS  PubMed  Google Scholar 

  • Viémont J, Crabbé J (2000) Growth cycle and dormancy in plants. CABI, Belgium

    Google Scholar 

  • Villalobos-Acuńa M, Mitcham EJ (2008) Ripening of European pears: the chilling dilemma. Postharvest Biol Technol 49:187–200

    Google Scholar 

  • Wang SY, Faust M (1994) Changes in the antioxidant system associated with bud break in ‘Anna’ apple (Malus domestica Borkh) buds. J Am Soc Hort Sci 119:735–741

    CAS  Google Scholar 

  • Wang Y, Garay L, Georgi LL, Reighard GL, Scorza R, and Abbott AG (2002a) Development of bacterial artificial chromosome contigs in the evergrowing gene region in peach [Prunus persica (L.) Batsch]. Acta Hort 592:183–189

    CAS  Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002b) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered 93:352–358

    CAS  PubMed  Google Scholar 

  • Wang SP, Yuan CJ, Dai YT, Shu H, Yang TY, Zhang CX (2004) Development of flower organs in sweet cherry in Shanghai area. Acta Hortic Sinica 31:357–359

    Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westwood MN, Bjornstad HO (1968) Chilling requirement of dormant seeds of 14 pear species as related to their climatic adaption. Proc Am Soc Hort Sci 92:141–149

    Google Scholar 

  • Wisniewski M, Santer JJ, Stepien V, Fuchigami LH (1994) Effects of near-lethal heat stress on endodormancy and ecodormancy of peach and hybrid poplar. HortScience 29:511

    Google Scholar 

  • Wu R, Wang T, McGie T, Voogd C, Allan AC, Hellens RP, Varkonyi-Gasic E (2014) Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. J Exp Bot 65:4985–4995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yaish MWF, Peng MS, Rothstein SJ (2009) AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59:123–135

    CAS  PubMed  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011a) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Sasaki R, Tao R (2011b) Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci Hortic (Amsterdam) 129:844–848

    CAS  Google Scholar 

  • Yamane H, Tao R, Ooka T, Jotatsu H, Sasaki R, Yonemori K (2011c) Comparative analyses of dormancy-associated MADS-box Genes, PpDAM5 and PpDAM6, in low- and high-chill peaches (Prunus persica L.). J Jpn Soc Hortic Sci 80:276–283

    CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, BonafedeM, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida R, Fekih R, Fujiwara S, Oda A, Miyata K, Tomozoe Y, Nakagawa M, Niinuma K, Hayashi K, Ezura H, Coupland G, Mizoguchi T (2009) Possible role of EARLY FLOWERING 3 (ELF3) in clock-dependent floral regulation by SHORT VEGETATIVE PHASE (SVP) in Arabidopsis thaliana. New Phytol 182:838–850

    CAS  PubMed  Google Scholar 

  • Yoshida T, Shimada K, Oma Y, Kalck V, Akimura K, Taddei A, Iwahashi H, Kugou K, Ohta K, Gasser SM, Harata M (2010) Actin-related protein Arp6 influences H2A.Z-dependent and -independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet 6:e1000910

    PubMed Central  PubMed  Google Scholar 

  • Zemach A, Gaspan O, Grafi G (2008) The three methyl-CpG-binding domains of AtMBD7 control its subnuclear localization and mobility. J Biol Chem 283:8406–8411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Wang Y, Zhang X, Zhang M, Han D, Qiu C, Han Z (2012) Dynamics of phytohormone and DNA methylation pattern changes during dormancy induction in strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 31:155–165

    PubMed  Google Scholar 

  • Zhang L, Wang L, Li B, Whiting MD, Liu Z, Singer S, Xu W, Wang S, Zhang C (2014) The effect of hydrogen cyanamide on floral organ development of sweet cherry in a warm region. In submission

    Google Scholar 

  • Zhebentyayeva TN, Fan S, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Gen 10:35–51

    Google Scholar 

  • Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, Ni Z (2013) Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. Plant Mol Biol 83:247–264

    CAS  PubMed  Google Scholar 

  • Zhu J, Jeong J, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA (2007) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105:4945–4950

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongrang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, Z., Zhu, H., Abbott, A. (2015). Dormancy Behaviors and Underlying Regulatory Mechanisms: From Perspective of Pathways to Epigenetic Regulation. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_4

Download citation

Publish with us

Policies and ethics