Skip to main content

Regulation of Seed Dormancy Cycling in Seasonal Field Environments

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

Seeds respond to a range of environmental signals, using them for both temporal and spatial sensing to alter their depth of dormancy to ensure germination takes place in a favorable habitat and climate space, and in the correct season. Many signals have the potential to inform the seed about its environment; we consider the effects of temperature as a temporal signal and both light and nitrate as spatial signals. A range of molecular mechanisms that regulate dormancy have been identified individually in controlled laboratory studies, but little is known about how this complex set of mechanisms is employed by the seed during dormancy cycling in variable field environments. We report on our published molecular ecophysiological studies of dormancy cycling in field soils with the winter annual Arabidopsis ecotype Cvi. In this work, we show how coordination of regulating mechanisms and signaling networks identified in the laboratory regulate seed dormancy in response to environmental signals in an ecological context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    Article  CAS  PubMed  Google Scholar 

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Article  CAS  PubMed  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds—ecology, biogeography, and evolution of dormancy and germination. Academic Press, London, p. 666

    Google Scholar 

  • Baskin CC, Baskin JM (2006) The natural history of soil seed banks of arable land. Weed Sci 54:549–557

    Article  CAS  Google Scholar 

  • Bassel GW, Lan H, Glaab E, Gibbs DJ, Gerjets T, Krasnogor N, Bonner AJ, Holdsworth MJ, Provart NJ (2011) Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc Natl Acad Sci U S A 108:9709–9714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci U S A 103:17042–17047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Li B, Li G, Charron J-B, Bai M, Shi X, Deng XW (2014) Arabidopsis phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways. Plant Cell 26:1949–1966

    Article  CAS  PubMed  Google Scholar 

  • Chiang GCK, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe WJJ, Donohue K, de Meaux J (2011) DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol 20:3336–3349

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Ann Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  • Daviere JM, de Lucas M, Prat S (2008) Transcriptional factor interaction: a central step in DELLA function. Curr Opin Genet Dev 18:295–303

    Article  CAS  PubMed  Google Scholar 

  • Dekkers BJW, Pearce S, van Bolderen-Veldkamp RP, Marshall A, Widera P, Gilbert J, Drost HG, Bassel GW, Muller K, King JR, Wood ATA, Grosse I, Quint M, Krasnogor N, Leubner-Metzger G, Holdsworth MJ, Bentsink L (2013) Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol 163:205–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donohue K (2002) Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83:1006–1016

    Article  Google Scholar 

  • Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005) Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution 59:740–757

    Article  PubMed  Google Scholar 

  • Evans MEK, Dennehy JJ (2005) Germ banking: bet-hedging and variable release from egg and seed dormancy. Q Rev Bio 80:431–451

    Article  Google Scholar 

  • Finch-Savage WE, Footitt S (2012) To germinate or not to germinate: a question of dormancy relief not germination stimulation. Seed Sci Res 22:243–248

    Article  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Ann Rev Plant Biol 59:387–415

    Article  CAS  Google Scholar 

  • Foo E, Platten JD, Weller JL, Reid JB (2006) PhyA and cry1 act redundantly to regulate gibberellin levels during de-etiolation in blue light. Physiol Plant 127:149–156

    Article  CAS  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone signalling pathways. Proc Natl Acad Sci U S A 108:20236–20241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Footitt S, Huang Z, Clay H, Mead A, Finch-Savage WE (2013) Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling resulting in winter and summer annual phenotypes. Plant J 74:1003–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Footitt S, Clay H, Dent K, Finch-Savage WE (2014) Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes. New Phytol 202:929–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gojon A, Krouk G, Perrine-Walker F, Laugier E (2011) Nitrate transceptor(s) in plants. J Exp Bot 62:2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35:1769–1786

    Article  CAS  PubMed  Google Scholar 

  • Hartweck LM (2008) Gibberellin signaling. Planta 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ho C-H, Lin S-H, Hu H-C, Tsay Y-F (2009) CHL1 Functions as a nitrate sensor in plants. Cell 138:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Schmitt J, Dorn L, Griffith C, Effgen S, Takao S, Koornneef M, Donohue K (2010) The earliest stages of adaptation in an experimental plant population: strong selection on QTLS for seed dormancy. Mol Ecol 19:1335–1351

    Article  PubMed  Google Scholar 

  • Jordan ET, Hatfield PM, Hondred D, Talon M, Zeevaart JAD, Vierstra RD (1995) Phytochrome-A overexpression in transgenic tobacco—correlation of dwarf phenotype with high-concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol 107:797–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kendall SL, Hellwege A, Marrio P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  PubMed  Google Scholar 

  • Linkies A, Müller K, Morris K, Tureèková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner G (2009) Ethylene interacts with abscisic acid to control germination by regulating endosperm rupture: a comparative brassicaceae approach using Lepidium sativum (cress) and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou JP, Kamiya Y, Nambara E, Truong HN (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McNamara JM, Barta Z, Klaassen M, Bauer S (2011) Cues and the optimal timing of activities under environmental changes. Ecol Lett 14:183–1190

    Google Scholar 

  • Morris K, Linkies A, Müller K, Oracz K, Wang X, Lynn JR, Leubner-Metzger G, Finch-Savage WE (2011) Regulation of seed germination in the close Arabidopsis relative Lepidium sativum (cress): a global tissue specific transcript analysis. Plant Physiol 155:1851–1870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    Article  PubMed  Google Scholar 

  • Nakabayashi K, Bartscha M, Xianga Y, Miattona E, Pellengahra S, Yanob R, Seob M, Soppe W (2012) The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell 24:2826–2838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura HA (2011) Wheat Homolog of MOTHER OF FT AND TFL1 Acts in the regulation of germination. Plant Cell 23:3215–3229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67

    Article  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penfield S, Josse E-M, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The Gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating Abscisic Acid Synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pons TL (1989) Breaking of seed dormancy by nitrate as a gap detection mechanism. Ann Bot-London 63:139–143

    CAS  Google Scholar 

  • Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn, CABI, Wallingford, pp. 261-292

    Chapter  Google Scholar 

  • Roberts HA (1964) Emergence and longevity in cultivated soil of seeds of some annual weeds. Weed Res 4:296–307

    Article  Google Scholar 

  • Saatkamp A, Affre L, Dutoit T, Poschlod P (2011a) Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields. Ann Bot 107:415–426

    Article  PubMed Central  PubMed  Google Scholar 

  • Saatkamp A, Affre L, Baumberger T, Dumas PJ, Gasmi A et al (2011b) Soil depth detection by seeds and diurnally fluctuating temperatures: different dynamics in 10 annual plants. Plant Soil 349:331–340

    Article  CAS  Google Scholar 

  • Schmuths H, Bachmann K, Weber WE, Horres R, Hoffmann MH (2006) Effects of preconditioning and temperature during germination of 73 natural accessions of Arabidopsis thaliana. Ann Bot-London 97:623–634

    Article  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Ann Rev Plant Biol 55:197–223

    Article  CAS  Google Scholar 

  • Teng S, Rognoni S, Bentsink L, Smeekens S (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381

    Article  CAS  PubMed  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Change Biol 17:2145–2161

    Article  Google Scholar 

  • Xi WY, Liu C, Hou XL, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.E. Finch-Savage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Finch-Savage, W., Footitt, S. (2015). Regulation of Seed Dormancy Cycling in Seasonal Field Environments. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_2

Download citation

Publish with us

Policies and ethics