Skip to main content

Chemical Release of Endodormancy in Potato Involves Multiple Mechanisms

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

The cessation of endodormancy in potato meristems can be accomplished with the application of compounds including bromoethane (BE), Rindite, or synthetic cytokinins such as 1-(α-ethylbenzyl)-3-nitroguanidine (NG). Rindite and BE are toxic compounds and induced a significant stress on dormant tissues. Transcriptional analysis reveals that BE induces the expression of genes associated with stress responses. RNA-seq analysis of dormant tubers treated with NG reveals a rapid response and induction of transcripts associated with cell cycle progression. Analysis of small RNAs demonstrates that nondormant potato meristems have an increased level of miR166, which is involved with shoot meristem development. The diverse transcriptional profiles between BE-treated and NG-treated potato meristems suggest that these compounds terminate potato endodormancy through different mechanisms. Cessation of endodormancy may involve miRNA activity that modifies the transcriptional machinery regulating the development of the shoot apical meristem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulos AA, Aivalakis G, Akoumianakis KA, Passam HC (2009) Bromoethane induces dormancy breakage and metabolic changes in tubers derived from true potato seed. Postharvest Biol Technol 54:165–171

    Article  CAS  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubrou A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci U S A 104:16371–16376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bryan J (1989) Breaking dormancy of potato tubers. International Potato Center, Lima Peru, p 12

    Google Scholar 

  • Campbell MA, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 8:317–328

    Article  CAS  PubMed  Google Scholar 

  • Campbell MA, Suttle J, Douches DS, Buell CR (2014) Treatment of potato tubers with the synthetic cytokinin 1-(d-ethylbenzyl)-3-nitroguindine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth. Funct Integr Genomics 14:789–799

    Google Scholar 

  • Coleman WK (1983) An evaluation of bromoethane for breaking tuber dormancy in Solanum tuberosum L. Am Potato J 60:161–167

    Article  CAS  Google Scholar 

  • Denny FE (1926) Hastening the sprouting of dormant potato tubers. Am J Bot 13:118–125

    Article  CAS  Google Scholar 

  • Destefano-Beltran L, Knauber D, Huckle L, Suttle J (2006) Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. J Exp Bot 57:2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemberg T (1970) The action of some cytokinins on the rest-period and the content of acid growth-inhibiting substances in potato. Physiol Plant 23:850–858

    Article  CAS  Google Scholar 

  • Huang DQ, Koh C, Feurtado JA, Tsang EWT, Cutler AJ (2013) MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 14:140. doi:10.1186/1471-2164-14-140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung J-H, Park C-M (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2–oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Jeon J, Choi K, Joung Y, Joung H (1999) Effects of rindite on breaking dormancy of potato microtubers. Am J Pot Res 76:5–8

    Article  CAS  Google Scholar 

  • Kumari S, Roy S, Singla-Pareek SL, Pareek A (2013) Cyclophilins: proteins in search of function. Plant Signal Behav 8. http://dx.doi.org/10.4161/psb.22734

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  CAS  PubMed  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Zhang SG, Han SY, Wu T, Zhang JH, Qi LW (2013) Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell Tissue Organ Cult 113:131–136

    Article  CAS  Google Scholar 

  • Mena-Benitez GL, Gandia-Herrero F, Graham S, Larson TR, McQueen-Mason SJ, French CE, Rylott EL, Bruce NC (2008) Engineering a catabolic pathway in plants for the degradation of 1,2-Dichloroethane. Plant Physiol 147:1192–1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millar AA, Gubler F (2005) The arabidopsis GAMYB-Like Genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell Online 17:705–721

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E (2009) Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol 71:403–423

    Article  CAS  PubMed  Google Scholar 

  • Or E, Vilozny I, Fennell A, Eyal Y, Ogrodovitch A (2002) Dormancy in grape buds: isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci 162:121–130

    Article  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of arabidopsis cell division through a D-Type cyclin. Science 283:1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Sablowski R (2009) Cytokinin and WUSCHEL tie the knot around plant stem cells. Proc Natl Acad Sci U S A 106:16016–16017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Suttle J (2001) Dormancy-related changes in cytokinin efficacy and metabolism in potato tubers during postharvest storage. Plant Growth Regul 35:199–206

    Article  CAS  Google Scholar 

  • Suttle J (2008) Effects of synthetic phenylurea and nitroguanidine cytokinins on dormancy break and sprout growth in russet burbank minitubers. Am J Pot Res 85:121–128

    Article  CAS  Google Scholar 

  • Suttle J (2009) Ethylene is not involved in hormone- and bromoethane-induced dormancy break in russet burbank minitubers. Am J Pot Res 86:278–285

    Article  CAS  Google Scholar 

  • Suttle JC, Abrams SR, De Stefano-Beltrán L, Huckle LL (2012) Chemical inhibition of potato ABA-8’-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration. J Exp Bot 63(15):5717–5725. doi:10.1093/jxb/ers146.

    Article  CAS  PubMed  Google Scholar 

  • Teper-Bamnolker P, Buskila Y, Lopesco Y, Ben-Dor S, Saad I, Holdengreber V, Belausov E, Zemach H, Ori N, Lers A, Eshel D (2012) Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem. Plant Physiol 158:2053–2067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turnbull C, Hake D (1985) The control of bud dormancy in potato. Planta 162:359–365

    Article  Google Scholar 

  • Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W (2000) Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211:502–509

    Article  CAS  PubMed  Google Scholar 

  • Varga MB, Ferenczy L (1956) Effect of ‘Rindite’ on the development of the groth-substances in potato tubers. Nature 178:1075

    Article  CAS  Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Hu F, Wang R, Zhou X, Sze S-H, Liou Lisa W, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campbell, M. (2015). Chemical Release of Endodormancy in Potato Involves Multiple Mechanisms. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_16

Download citation

Publish with us

Policies and ethics