Skip to main content

A Comparison of Transcriptomes Between Germinating Seeds and Growing Axillary Buds of Arabidopsis

  • Chapter
  • First Online:
Book cover Advances in Plant Dormancy

Abstract

Plant growth is constrained by developmental and environmental cues. This growth constraint is strategic and determines plant’s architecture and competence of environmental adaptation. Dormancy is one form of growth arrest that commonly occurs in seeds and axillary buds. Transcriptomes of germinating seeds and axillary buds display some characteristic features in over-represented cis-acting elements in the promoters of genes whose expressions are associated with germination or axillary bud outgrowth. Two cis-acting elements, Up1 and Up2, are over-represented in the promoters of up-regulated genes during germination or axillary bud growth. Gene ontology classification indicated that genes containing Up1- or Up2-cis-acting elements are associated with protein synthesis and cell cycle. Interestingly, a significant proportion of the Up1- and Up2-containing genes expressed in growing axillary buds encode for protein synthesis- and cell cycle-related proteins, while those expressed in germinating seeds encode for protein synthesis, but not cell cycle-related proteins. Additionally, promoters of genes down-regulated during seed germination or axillary bud outgrowth contain a significant over-representation of abscisic acid-responsive elements (ABRE). The down-regulated genes containing ABRE promoter elements are enriched for processes related to metabolism and stress response in both seeds and axillary buds, although different sets of genes are expressed in each organ. This suggests that unidentified organ-specific cis-acting elements are involved in the transcriptional regulation of down-regulated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABRE:

Abscisic acid responsive element

ABRC:

ABA-response complex

BRC1:

BRANCHED1

CE:

Coupling element

FR:

Far-red light

GA:

Gibberellin

GO:

Gene ontology

MAX:

MORE AXILLARY GROWTH

R:

Red light

TCP:

TEOSINTE BRANCHED1/CYCLOIDEA/PCF

References

  • Aguilar-Martinez JA, Poza-Carrion C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barroco RM, Van Poucke K, Bergervoet JH, De Veylder L, Groot SP, Inze D et al (2005) The role of the cell cycle machinery in resumption of postembryonic development. Plant Physiol 137:127–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Aoyama N, Chung Y-Y, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000) The hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24:159–169

    Article  CAS  PubMed  Google Scholar 

  • Cline MG (1991) Apical dominance. Bot Rev 57:318–358

    Article  Google Scholar 

  • Cline MG (1997) Concepts and terminology of apical dominance. Am J Bot 84:1064–1069

    Article  CAS  PubMed  Google Scholar 

  • de Castro RD, van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000). Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122:327–335

    Article  PubMed Central  PubMed  Google Scholar 

  • Devitt ML, Stafsrom JP (1995) Cell cycle regulation during growth-dormancy cycles in pea axillary buds. Plant Mol Biol 29:255–265

    Article  CAS  PubMed  Google Scholar 

  • Doebley EA, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol 142:812–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 456:189–194

    Article  Google Scholar 

  • Gonzalez-Grandio E, Poza-Carrion C, Sorzano CO, Cubas P (2013) BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25:834–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gornik K, de Castro RD, Liu Y, Bino YL, Groot SPC (1997). Inhibition of cell division during cabbage (Brassica oleracea L.) seed germination. Seed Sci Res 7:333–340

    Article  Google Scholar 

  • Penfield S, Alison YL, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • Howarth DG, Donoghue MJ (2006) Phylogenetic analysis of the “ECE” (CYC1/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci U S A 103:9101–9106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iglesias-Fernandez R, Rodrıguez-Gacio MC, Barrero-Sicilia C, Carbonero P, Matilla A (2011) Three endo- β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta 233:25–36

    Article  CAS  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, Para-, and eco-dormancy: physiological terminology and classification for dormancy research. Hortscience 22:371–377

    Google Scholar 

  • Lee KP, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci U S A 107:19108–19113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KP, Piskurewicz U, Tureckova V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L (2012) Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes Dev 26:1984–1996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Hilhorst HWM, Groot SPC, Bino R (1997) Amounts of nuclear DNA and internal morphology of gibberellin- and abscisic acid-deficient tomato (Lycopersicon esculentum Mill.) seeds during maturation, imbibition and germination. Annals Bot 79:161–168

    Article  CAS  Google Scholar 

  • Modoka Y, Mori H (2000) Two novel transcripts expressed in pea dormant axillary buds. Plant Cell Physiol 41:274–281

    Article  Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1322045111

    Google Scholar 

  • Muller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    Article  PubMed  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67

    Article  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rae GM, David K, Wood M (2013) The dormancy marker DRM1/ARP associated with dormancy but a broader role in planta. Dev Biol J. ID 632524

    Google Scholar 

  • Reddy SK, Holalu SV, Casal JJ, Finlayson SA (2013) Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. Plant Physiol 163:1047–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen OX, Ho THD (1995) An abscisic-acid response complex consists of a g-box and a novel coupling element. Plant Physiol 108:46–46

    Google Scholar 

  • Shen QX, Zhang PN, Ho THD (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimizu S, Mori H (1998) Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol 39:255–262

    Article  CAS  PubMed  Google Scholar 

  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sliwinska E, Jing H-C, Job C, Job D, Bergervoet JHM, Bino RJ, Groot SPC (1999) Effect of harvest time and soaking treatment on cell cycle activitiy in sugarbeet seeds. Seed Sci Res 9:91–99

    Article  Google Scholar 

  • Sliwinska E, Bassel GW, Bewley JD (2009) Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. J Exp Bot 60:3587–3594

    Article  CAS  PubMed  Google Scholar 

  • Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–5576

    Article  PubMed  Google Scholar 

  • Stafstrom JP, Ripley BD, Devitt ML, Drake DB (1998) Dormancy-associated gene expression in pea axillary buds. Planta 205:547–552

    Article  CAS  PubMed  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E (2005) Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol 138:757–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatematsu K, Kamiya Y, Nambara E (2008a) Co-regulation of ribosomal protein genes as an indicator of growth status. Plant Signal Behav 3:450–452

    Article  PubMed Central  PubMed  Google Scholar 

  • Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008b) Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J 53:42–52

    Article  CAS  PubMed  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role of strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, McCourt P (2009) Strigolactones: a new hormone with a past. Curr Opin Plant Biol 12:556–561.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y et al (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    Article  CAS  PubMed  Google Scholar 

  • Tremousaygue D, Garnier L, Bardet C, Dabos P, Herve C, Lescure B (2003) Internal telomeric repeats and ‘TCP domain’ protein-binding sites cooperate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33:957–966

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Duermeyer L, Leoveanu C, Nambara E (2014) The functions of the endosperm during seed germination. Plant Cell Physiol. in press

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Belay Ayele (Department of Plant Sciences, University of Manitoba) for valuable comments on this manuscript. This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and NSERC Strategic Project Grant to E.N. [grant number: RGPIN-2014-03621, STPGP 397474-10]

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, D., Tatematsu, K., Nakabayashi, K., Endo, A., Okamoto, M., Nambara, E. (2015). A Comparison of Transcriptomes Between Germinating Seeds and Growing Axillary Buds of Arabidopsis. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_13

Download citation

Publish with us

Policies and ethics