Skip to main content

Bridging Dormancy Release and Apical Dominance in Potato Tuber

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

The potato tuber is a swollen stem that develops and matures underground and is harvested at physiological dormancy. During postharvest storage, potato tuber dormancy is regulated by endogenous plant hormones and their balance inside the tuber. Dormant potato tubers cannot be induced for early sprouting without some form of stress or exogenous hormone treatment. The role of hormonal control in tuber dormancy release and sprouting has been investigated but is still not well understood. When dormancy is released, sprouting may be inhibited by exogenous sprouting control agents or cold temperature, leading to stem branching. Within the tuber, a rapid shift from storage metabolism to reserve mobilization during postharvest storage suggests a transition from sink to source, consistent with bud growth. Dominance of the growing apical bud over other lateral buds decreases during storage and is one of the earliest morphophysiological indicators of the tuber’s physiological age . Bud sprouting and branching during storage is a serious problem for seed tuber producers since it affects future plant stem numbers which in turn determine daughter tuber size distribution. Three main types of loss of apical dominance (AD) affect sprouting pattern. Hallmarks of programmed cell death have been identified in the tuber apical meristem (TAM) during extended cold storage or chemical stress and are associated with loss of AD. Nevertheless, hormonal regulation, carbohydrate reserves, and viability of the TAM cells determine tuber sprouting pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Apical dominance

BE:

Bromoethane

CIS:

Cold-induced sweetening

PCD:

Programmed cell death

TAM:

Tuber apical meristem

References

  • Alexopoulos AA, Aivalakis G, Akoumianakis KA, Passam HC (2009) Bromoethane induces dormancy breakage and metabolic changes in tubers derived from true potato seed. Postharvest Biol Technol 54 (3):165–171

    Article  CAS  Google Scholar 

  • Biemelt S, Hajirezaei M, Hentschel E, Sonnewald U (2000) Comparative analysis of abscisic acid content and starch degradation during storage of tubers harvested from different potato varieties. Potato Res 43 (4):371–382

    Article  CAS  Google Scholar 

  • Caldiz DO (2009) Physiological age research during the second half of the twentieth century. Potato Res 52 (4):295–304

    Article  Google Scholar 

  • Campbell M, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genom 8(4):317–328

    Article  CAS  Google Scholar 

  • Campbell MA, Gleichsner A, Alsbury R, Horvath D, Suttle J (2010) The sprout inhibitors chlorpropham and 1, 4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Plant Mol Biol 73(1):181–189

    Article  CAS  PubMed  Google Scholar 

  • Cline MG (1991) Apical dominance. The Botanical Review 57(4):318–358

    Article  Google Scholar 

  • Cline MG (1997) Concepts and terminology of apical dominance. American J Bot 84(8):1064–1064

    Article  CAS  Google Scholar 

  • Coleman WK (1984) Large scale application of bromoethane for breaking potato tuber dormancy. Am J Potato Res 61(9):587–589

    Article  Google Scholar 

  • Dale MFB, Bradshaw JE (2003) Progress in improving processing attributes in potato. Trends Plant Sci 8(7):310–312

    Article  CAS  PubMed  Google Scholar 

  • Destefano-Beltran L, Knauber D, Huckle L, Suttle J (2006a) Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. J Exp Bot 57(11):2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Destefano-Beltran L, Knauber D, Huckle L, Suttle JC (2006b) Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol Biol 61(4):687–697

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol 142(3):812–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dyson P, Digby J (1975) Effects of calcium on sprout growth and sub-apical necrosis in Majestic potatoes. Potato Res 18(2):290–305

    Article  Google Scholar 

  • Ewing EE, Simko I, Omer EA, Davies PJ (2004) Polygene mapping as a tool to study the physiology of potato tuberization and dormancy. Am J Potato Res 81(4):281–289

    Article  CAS  Google Scholar 

  • Fauconnier ML, Rojas Beltrán J, Delcarte J, Dejaeghere F, Marlier M, Jardin P (2002) Lipoxygenase pathway and membrane permeability and composition during storage of potato tubers (Solanum tuberosum L. cv Bintje and Desiree) in different conditions. Plant Biol 4(1):77–85

    Article  CAS  Google Scholar 

  • Goodwin P (1967) The control and branch growth on potato tubers: I. Anatomy of buds in relation to dormancy and correlative inhibition. J Exp Bot 18(1):78–86

    Article  Google Scholar 

  • Harris PM (1992) The potato crop: the scientific basis for improvement, vol edn 2. Chapman and Hall, London

    Google Scholar 

  • Hartmans KJ, Van Loon C (1987) Effect of physiological age on growth vigour of seed potatoes of two cultivars. I. Influence of storage period and temperature on sprouting characteristics. Potato Res 30(3):397–410

    Article  Google Scholar 

  • Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S (2011) Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol 155(2):776–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemberg T (1985) Potato rest. In: Li PHW CJ (ed) Potato physiology, vol 01-244-76600. Academic, Orlando, pp 353–388

    Chapter  Google Scholar 

  • Holmes JC, Lang RW, Singh AK (1970) The effect of five growth regulators on apical dominance in potato seed tubers and on subsequent tuber production. Potato Res 13(4):342–352

    Article  CAS  Google Scholar 

  • Iritani W, Weller L, Russell T (1973) Relative differences in sugar content of basal and apical portions of Russet Burbank potatoes. Am Potato J 50(1):24–31

    Article  Google Scholar 

  • Isherwood FA (1973) Starch-sugar interconversion in Solanum tuberosum. Phytochemistry 12(11):2579–2591

    Article  CAS  Google Scholar 

  • Isla MI, Vattuone MA, Sampietro AR (1998) Hydrolysis of sucrose within isolated vacuoles from Solanum tuberosum L. tubers. Planta 205(4):601–605

    Article  CAS  PubMed  Google Scholar 

  • Ji ZL, Wang SY (1988) Reduction of abscisic acid content and induction of sprouting in potato, Solanum tuberosum L., by thidiazuron. J Plant Growth Regul 7(1):37–44

    Article  CAS  Google Scholar 

  • Kincaid D, Westermann D, Trout T (1993) Irrigation and soil temperature effects on Russet Burbank quality. Am Potato J 70(10):711–723

    Article  Google Scholar 

  • Krijthe N (1962) Observations on the sprouting of seed potatoes. Potato Res 5(4):316–333

    Article  Google Scholar 

  • Kumar G, Knowles NR (1993) Involvement of auxin in the loss of apical dominance and plant growth potential accompanying aging of potato seed tubers. Can J Bot 71(4):541–550

    Article  CAS  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo, para-and ecodormancy: physiological terminology and classification for dormancy research. Hort Sci 22:371–377

    Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32(6):694–703

    Article  CAS  PubMed  Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences 111(16):6092–6097

    Google Scholar 

  • Meijers CP (1972) Effect of carbon-disulphide on the dormancy and sprouting of seed-potatoes. Potato Res 15(2):160–165

    Article  CAS  Google Scholar 

  • Michener HD (1942) Dormancy and apical dominance in potato tubers. Am J Bot 20:558–568

    Article  Google Scholar 

  • Moll A (1994) The effects of physiological ageing of seed tubers on growth characteristics of eight potato cultivars tested under controlled conditions. Potato Res 37:11–20

    Article  Google Scholar 

  • O’Brien P, Allen E, Bean J, Griffith R, Jones SA, Jones J (1983) Accumulated day-degrees as a measure of physiological age and the relationships with growth and yield in early potato varieties. J Agric Sci 101(3):613–631

    Article  Google Scholar 

  • Pasare SA, Ducreux LJ, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, Krol S, Bramley PM, Roberts AG (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytologist 198(4):1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Phillips IDJ (1975) Apical dominance. Ann Rev Plant Phys 26(1):341–367

    Article  CAS  Google Scholar 

  • Prat S, Frommer WB, Hofgen R, Keil M, Kossmann J, Koster-Topfer M, Liu XJ, Muller B, Pena-Cortes H, Rocha-Sosa M (1990) Gene expression during tuber development in potato plants. FEBS Lett 268(2):334–338

    Article  CAS  PubMed  Google Scholar 

  • Rappaport L, Lippert LF, Timm H (1957) Sprouting, plant growth, and tuber production as affected by chemical treatment of white potato seed pieces. Am J Potato Res 34(9):254–260

    Article  CAS  Google Scholar 

  • Rehman F, Lee SK, Kim HS, Jeon JH, Park J, Joung H (2001) Dormancy breaking and effects on tuber yield of potato subjected to various chemicals and growth regulators under greenhouse conditions. J Biol Sci 1(9):818–820

    Article  Google Scholar 

  • Rentzsch S, Podzimska D, Voegele A, Imbeck M, Müller K, Linkies A, Leubner-Metzger G (2011) Dose-and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases. Planta 235:137–151

    Article  PubMed  Google Scholar 

  • Salimi K, Tavakkol Afshari R, Hosseini MB, Struik PC (2010) Effects of gibberellic acid and carbon disulphide on sprouting of potato minitubers. Scientia Hort 124:14–18

    Article  CAS  Google Scholar 

  • Simko I, McMurry S, Yang HM, Manschot A, Davies PJ, Ewing EE (1997) Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiol 115(4):1453–1459

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sonnewald U (2001) Control of potato tuber sprouting. Trends Plant Sci 6(8):333–335

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald S, Sonnewald U (2014) Regulation of potato tuber sprouting. Planta 239(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Sorce C, Lorenzi R, Ceccarelli N, Ranalli P (2000) Changes in free and conjugated IAA during dormancy and sprouting of potato tubers. Funct Plant Biol 27(4):371–377. doi:10.1071/PP99150

    CAS  Google Scholar 

  • Sorce C, Lombardi L, Giorgetti L, Parisi B, Ranalli P, Lorenzi R (2009) Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum) cultivars. J Plant Physiol 166(10):1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Sowokinos JR (2001) Biochemical and molecular control of cold-induced sweetening in potatoes. Am J Potato Res 78(3):221–236

    Article  CAS  Google Scholar 

  • Sowokinos J, Shock C, Stieber T, Eldredge E (2000) Compositional and enzymatic changes associated with the sugar-end defect in Russet Burbank potatoes. Am J Potato Res 77(1):47–56

    Article  CAS  Google Scholar 

  • Struik P (2007) The canon of potato science: 40. Physiological age of seed tubers. Potato Res 50(3):375–377

    Article  Google Scholar 

  • Struik PC, Wiersema SG (1999) Seed potato technology. CSIRO, Wageningen

    Google Scholar 

  • Sukhova LS, MachÁČkovÁ I, Eder J, Bibik ND, Korableva NP (1993) Changes in the levels of free IAA and cytokinins in potato tubers during dormancy and sprouting. Biol Planta 35(3):387–391

    Article  CAS  Google Scholar 

  • Suttle JC (2004a) Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment. J Plant Physiol 161(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Suttle JC (2004b) Physiological regulation of potato tuber dormancy. Am J Potato Res 81(4):253–262

    Article  CAS  Google Scholar 

  • Suttle JC (2007) Dormancy and sprouting. In Vreugdenhil D, ed, Potato Biology and Biotechnology: Advances and Perspectives. Elsevier, Amsterdam, pp 288–309.

    Google Scholar 

  • Suttle JC (2009) Ethylene is not involved in hormone-and bromoethane-induced dormancy break in Russet Burbank minitubers. Am J Potato Res 86(4):278–285

    Article  CAS  Google Scholar 

  • Suttle JC, Hultstrand JF (1994) Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol 105(3):891–896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suttle JC, Abrams SR, Stefano-Beltrán D, Huckle LL (2012) Chemical inhibition of potato ABA-8′-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration. J Exp Bot 63(15):5717–5725

    Article  CAS  PubMed  Google Scholar 

  • Teper-Bamnolker P, Dudai N, Fischer R, Belausov E, Zemach H, Shoseyov O, Eshel D (2010) Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem. Planta 232(1):179–186

    Article  CAS  PubMed  Google Scholar 

  • Teper-Bamnolker P, Buskila Y, Lopesco Y, Ben-Dor S, Saad I, Holdengreber V, Belausov E, Zemach H, Ori N, Lers A, Eshel D (2012) Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem. Plant Physiol 158:2053–2067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson AL, Love SL, Sowokinos JR, Thornton MK, Shock CC (2008) Review of the sugar end disorder in potato (Solanum tuberosum, L.). Am J Potato Res 85(5):375–386

    Article  Google Scholar 

  • Turnbull CGN, Hanke DE (1985) The control of bud dormancy in potato tubers. Planta 165(3):359–365

    Article  CAS  PubMed  Google Scholar 

  • Vakis N (1986) Influence of physiological ageing of seed potatoes on yield and earliness. Potato Res 29(3):417–425

    Article  Google Scholar 

  • Van Loon C (1987) Effect of physiological age on growth vigour of seed potatoes of two cultivars. 4. Influence of storage period and storage temperature on growth and yield in the field. Potato Res 30(3):441–450

    Article  Google Scholar 

  • Viola R, Pelloux J, van der Ploeg A, Gillespie T, Marquis N, Roberts AG, Hancock RD (2007) Symplastic connection is required for bud outgrowth following dormancy in potato (Solanum tuberosum L.) tubers. Plant, Cell & Environment 30(8):973–983

    Article  CAS  Google Scholar 

  • Visser RGF, Vreugdenhil D, Hendriks T, Jacobsen E (1994) Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum). Physiol Planta 90(2):285–292

    Article  CAS  Google Scholar 

  • Wiltshire JJJ, Cobb AH (1996) A review of the physiology of potato tuber dormancy. Ann Appl Biol 129(3):553–569

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dani Eshel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eshel, D. (2015). Bridging Dormancy Release and Apical Dominance in Potato Tuber. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_11

Download citation

Publish with us

Policies and ethics