Actimetry@home: Actimetric Tele-surveillance and Tailored to the Signal Data Compression

  • Jacques DemongeotEmail author
  • Olivier Hansen
  • Ali Hamie
  • Hana Hazgui
  • Gilles Virone
  • Nicolas Vuillerme
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8456)


An early diagnosis of a neurodegenerative process like the Alzheimer’s disease needs a tele-surveillance at home based on the recording of pathologic signals coming both from the cardiac activity (for detecting the loss of the sinus respiratory arrhythmia) and from the repetition of tasks of the daily life (signing a pathologic behavior called perseveration), whose non-invasive detection can lead to an early diagnosis, if it triggers secondly a battery of tests based on brain imaging, clinical neurology and cognitive sciences to confirm the suspicion of neuronal degeneration. For increasing the efficiency of alarms triggering these tests, we use dedicated tailored data compression methods, whose two examples will be presented, the Dynalets method for quantitative compression of the physiologic signals and the monotonic signature for qualitative compression.


Tele-surveillance at home Alarm triggering Tailored to the signal data compression 


  1. 1.
    World Population Ageing 2009. Department of economical and social affairs report, United Nations publication, New York (2010)Google Scholar
  2. 2.
    Jamison, D.T., Breman, J.G., Measham, A.R., Alleyne, G., Claeson, M., Evans, D.B., Jha, P., Mills, A., Musgrove, P.: Disease Control Priorities in Developing Countries. World Bank, Washington (2006)Google Scholar
  3. 3.
    Demongeot, J., Virone, G., Duchêne, F., Benchetrit, G., Hervé, T., Noury, N., Rialle, V.: Multi-sensors acquisition, data fusion, knowledge mining and triggering in health smart homes for elderly people. C.R. Biol. 325, 673–682 (2002)CrossRefGoogle Scholar
  4. 4.
    Virone, G., Noury, N., Demongeot, J.: A system for automatic measurement of circadian activity deviation in telemedicine. IEEE Trans. Biomed. Eng. 49, 1463–1469 (2002)CrossRefGoogle Scholar
  5. 5.
    Abdulrazak, B., Mokhtari, M., Feki, M.A., Ghorbel, M.: Integration of home networking in a smart environment dedicated to people with disabilities. In: ICTTA’04, pp. 125–126. IEEE, Piscataway (2004)Google Scholar
  6. 6.
    Benneyan, J.C.: An introduction to using computer simulation in healthcare: patient wait case study. J. Soc. Health Syst. 5, 1–15 (1997)Google Scholar
  7. 7.
    Lowery, J.C.: Introduction to simulation in healthcare. In: WSC’96 28th Conference on Winter simulation, pp. 78–84. IEEE Press, Piscataway (1996)Google Scholar
  8. 8.
    O’Connor, C.M., Smith, R., Nott, M.T., Lorang, C., Mathews, R.M.: Using video simulated presence to reduce resistance to care and increase participation of adults with dementia. Am. J. Alzeimer’s Dis. Other Dementias 26, 317–325 (2011)CrossRefGoogle Scholar
  9. 9.
    Lowery, J.C., Martin, J.B.: Design and validation of a critical care simulation model. J. Soc. Health Syst. 3, 15–36 (1992)Google Scholar
  10. 10.
    Gibson, B., Weir, C.: Development and preliminary evaluation of a simulation-based diabetes education module. AMIA Annu. Symp. Proc. 2010, 246–250 (2010)Google Scholar
  11. 11.
    Berg, D.R., Carlson, A., Durfee, W.K., Sweet, R.M., Reihsen, T.: Low-cost, take-home, beating heart simulator for health-care education. Stud. Health Technol. Inf. 163, 57–59 (2011)Google Scholar
  12. 12.
    Wong, P., Graves, M.J., Lomas, D.J.: Integrated physiological flow simulator and pulse sequence monitoring system for MRI. Med. Biol. Eng. Comput. 46, 399–406 (2008)CrossRefGoogle Scholar
  13. 13.
    Mahmoud, S.M., Akhlaghinia, M.J., Lotfi, A., Langensiepen, C.: Trend modelling of elderly lifestyle within an occupancy simulator. In: UKSim’11 International Conference on Computer Modelling and Simulation, Cambridge, pp. 156–161. IEEE Press, Piscataway (2011)Google Scholar
  14. 14.
    Virone, G., Lefebvre, B., Noury, N., Demongeot, J.: Modeling and computer simulation of physiological rhythms and behaviors at home for data fusion programs in a telecare system. In: HealthCom’03, pp. 118–127. IEEE Press, Piscataway (2003)Google Scholar
  15. 15.
    Nabih, K., Gomaa, M.M., Osman, H.S., Aly, G.M.: Modeling, simulation, and control of smart homes using petri nets. Int. J. Smart Home 5, 1 (2011)Google Scholar
  16. 16.
    Cardinaux, F., Brownsell, S., Hawley, M.S., Bradley, D.: A home daily activity simulation model for the evaluation of lifestyle monitoring systems. Comput. Biol. Med. 43, 1428–1436 (2013)CrossRefGoogle Scholar
  17. 17.
    Lazovik, A., Kaldeli, E., Lazovik, E., Aiello, M.: Planning in a smart home: visualization and simulation. In: ICAPS’09, pp. 13–16. AAAI Press, Menlo Park (2009)Google Scholar
  18. 18.
    Poland, M.P., Nugent, C.D., Wang, H., Chen, L.: Development of a smart home simulator for use as a heuristic tool for management of sensor distribution. Techn. Health Care 17, 171–182 (2009)Google Scholar
  19. 19.
    Virone, G., Istrate, D.: Integration of an environmental sound module to an existing in-home activity simulator. In: 29th IEEE-EMBS Engineering in Medicine and Biology Society) Microtechnologies in Medicine & Biology, pp. 3810–3813. IEEE, Piscataway (2007)Google Scholar
  20. 20.
    Istrate, D., Castelli, E.: Information extraction from sound for medical telemonitoring. IEEE Trans. Inf Technol. Biomed. 10, 264–274 (2006)CrossRefGoogle Scholar
  21. 21.
    Albæripæ, W.: Tractatus Numerorum a ternario usque ad duodenarium, ad Thomam monachum. Manu- scrit incunable, Médiathèque de Troyes, manuscript 969, l° 195 (vers 1180)Google Scholar
  22. 22.
    Demongeot, J., Françoise, J.P.: Approximation for limit cycles. C. R. Biol. 329, 967–970 (2006)CrossRefGoogle Scholar
  23. 23.
    Virone, G., Vuillerme, N., Mokhtari, M., Demongeot, J.: Persistent behaviour in healthcare facilities: from actimetric tele-surveillance to therapy education. In: Mellouk, A., Fowler, S., Hoceini, S., Daachi, B. (eds.) WWIC 2014. LNCS, vol. 8458, pp. 297–311. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Franco, C., Fleury, A., Guméry, P.Y., Diot, B., Demongeot, J., Vuillerme, N.: iBalance-ABF: a smartphone-based audio-biofeedback balance system. IEEE Tr. Biomed. Eng 60, 211–215 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jacques Demongeot
    • 1
    Email author
  • Olivier Hansen
    • 1
  • Ali Hamie
    • 1
  • Hana Hazgui
    • 1
  • Gilles Virone
    • 1
  • Nicolas Vuillerme
    • 1
  1. 1.AGIM (Ageing, Imaging & Modelling) Laboratory, Faculty of MedicineFRE 3405 CNRS-UJF-EPHELa TroncheFrance

Personalised recommendations