Skip to main content

Nanofibre-Based Sensors for Visual and Optical Monitoring

  • Chapter
Book cover Electrospinning for High Performance Sensors

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Sensors supplying a change in optical properties, easily detectable with the naked eye (visual) or inexpensive equipment such as compact spectrometers (optical), are a very powerful tool to visualise a wide range of parameters, including temperature, light, pH and concentration of chemical substances. Most of these sensors rely on indicator compounds showing a change in optical absorbance (colour) or fluorescence under the influence of a certain parameter. Halochromic dyes, for instance, change colour with pH. Since the use of nanofibres improves sensor sensitivity and response time due to their large surface area to volume ratio, the incorporation of indicator compounds into nanofibres is one of the current challenges in sensor design. This chapter discusses the production of colorimetric and fluorescent nanofibrous membranes for visual and optical monitoring (Sects. 7.3 and 7.4), supplemented by some fundamental information on those sensing systems (Sect. 7.2) and some interesting applications (Sect. 7.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Ding, M. Wang, J. Yu, G. Sun, Gas sensors based on electrospun nanofibers. Sensors 9, 1609–1624 (2009)

    Article  Google Scholar 

  2. B. Ding, M. Wang, X. Wang, J. Yu, G. Sun, Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 13(11), 16–27 (2010)

    Article  Google Scholar 

  3. L. Matlock-Colangelo, A.J. Baeumner, Recent progress in the design of nanofiber-based biosensing devices. Lab Chip 12, 2612–2620 (2012)

    Google Scholar 

  4. G.J. Mohr, H. Müller, B. Bussemer, A. Stark, T. Carofiglio, S. Trupp, R. Heuermann, T. Henkel, D. Escudero, L. Gonzalez, Design of acidochrmic dyes for facile preparation of pH sensor layers. Anal. Bioanal. Chem. 392, 1411–1418 (2008)

    Article  Google Scholar 

  5. M.C. Janzen, J.B. Ponder, D.P. Bailey, C.K. Ingison, K.S. Suslick, Colorimetric sensor arrays for volatile organic compounds. Anal. Chem. 78, 3591–3600 (2006)

    Article  Google Scholar 

  6. E. Moczko, I.V. Meglinski, C. Bessant, S.A. Piletsky, Dyes assay for measuring physicochemical parameters. Anal. Chem. 81, 2311–2316 (2009)

    Article  Google Scholar 

  7. C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors. Chem. Rev. 108, 400–422 (2008)

    Article  Google Scholar 

  8. G.J. Mohr, New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation – a review on recent developments. Anal. Bioanal. Chem. 386, 1201–1214 (2006)

    Article  Google Scholar 

  9. P. Makedonski, M. Brandes, W. Grahn, W. Kowalsky, J. Wihern, S. Wiese, H.-H. Johannes, Synthesis of new kinds of reactive azo dyes and their application for fibre-optical pH-measurements. Dyes Pigments 61, 109–119 (2004)

    Article  Google Scholar 

  10. M. Schäferling, The art of fluorescence imaging with chemical sensors. Angew. Chem. Int. Ed. 51, 3532–3554 (2012)

    Article  Google Scholar 

  11. G.J. Mohr, D. Citterio, C. Demuth, M. Fehlmann, L. Jenny, C. Lohse, A. Moradian, T. Nezel, M. Rothmaier, U.E. Spichiger, Reversible chemical reactions as the basis for optical sensors used to detect amines, alcohols and humidity. J. Mater. Chem. 9, 2259–2264 (1999)

    Article  Google Scholar 

  12. S. Chigome, N. Torto, A review of opportunities for electrospun nanofibers in analytical chemistry. Anal. Chim. Acta. 706, 25–36 (2011)

    Article  Google Scholar 

  13. L. Van der Schueren, K. De Clerck, Coloration and application of pH-sensitive dyes on textile materials. Color. Technol. 128, 82–90 (2012)

    Article  Google Scholar 

  14. H. Zollinger, Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments (Wiley-VCH, Weinheim, 1991)

    Google Scholar 

  15. P. Bamfield, Chromic Phenomena: Technological Applications of Colour Chemistry (The Royal Society of Chemistry, Cambridge, 2001)

    Google Scholar 

  16. T.H. Nguyen, T. Venugopala, S. Chen, T. Sun, K.T.V. Grattan, S.E. Taylor, P.A.M. Basheer, A.E. Long, Fluorescence based fibre optic pH sensor of the pH 10–13 range suitable for corrosion monitoring in concrete structures. Sensors Actuators B Chem. 191, 498–507 (2014)

    Article  Google Scholar 

  17. T. Doussineau, A. Schulz, A. Lapresta-Fernandez, A. Moro, S. Körsten, S. Trupp, G.J. Mohr, On the design of fluorescent ratiometric nanosensors. Chem. Eur. J. 16, 10290–10299 (2010)

    Google Scholar 

  18. T. Terai, T. Nagano, Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch. Eur. J. Physiol. 465, 347–359 (2013)

    Article  Google Scholar 

  19. H. Long, H. Chen, H. Wang, Z. Peng, Y. Yang, G. Zhang, N. Li, F. Liu, J. Pei, Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Anal. Chim. Acta. 744, 82–91 (2012)

    Article  Google Scholar 

  20. X. Wang, Y.-G. Kim, C. Drew, B.-C. Ku, J. Kumar, L.A. Samuelson, Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett. 4(2), 331–334 (2004)

    Article  Google Scholar 

  21. O.S. Wolfbeis, Sensor paints. Adv. Mater. 20, 3759–3763 (2008)

    Article  Google Scholar 

  22. H. Guillemain, M. Rajarajan, Y.-C. Lin, C.-T. Chen, T. Sun, K.T.V. Grattan, Feasibility studies using thin sol-gel films doped with a novel lead-selective fluorophore for optical fibre sensing applications. Measurement 46, 2971–2977 (2013)

    Article  Google Scholar 

  23. O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors. Anal. Chem. 80, 4269–4283 (2008)

    Article  Google Scholar 

  24. S. Hornig, C. Biskup, A. Gräfe, J. Wotschadlo, T. Liebert, G.J. Mohr, T. Heinze, Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter 4, 1169–1172 (2008)

    Article  Google Scholar 

  25. S. Schreml, R.J. Meier, O.S. Wolfbeis, M. Landthaler, R.-M. Szeimies, P. Babilas, 2D luminescence imaging of pH in vivo. Proc. Natl. Acad. Sci. 108(6), 2432–2437 (2011)

    Article  Google Scholar 

  26. S. Ramakrishna, K. Fuijihara, W.-E. Teo, T.-C. Lim, Z. Ma, An Introduction to Electrospinning and Nanofibers (World Scientific Publishing Co. Pte. Ltd., Singapore, 2005)

    Book  Google Scholar 

  27. J.H. Wendorff, S. Agarwal, A. Greiner, Electrospinning: Materials, Processing and Applications (Wiley-VCH Verlag & Co., Weinheim, 2012)

    Book  Google Scholar 

  28. D. Fantini, L. Costa, Dye, fluorophores and pigment coloration of nanofibers produced by electrospinning. Polym. Adv. Technol. 20, 111–121 (2009)

    Article  Google Scholar 

  29. L. Van der Schueren, T. Mollet, O. Ceylan, K. De Clerck, The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. Eur. Polym. J. 46, 2229–2239 (2010)

    Article  Google Scholar 

  30. S.-H. Kim, J.-S. Bae, Halochromic chemosensor prepared by pyran-based nanofibers. Fibers Polym. 14(12), 1981–1984 (2013)

    Article  Google Scholar 

  31. T.R. Dargaville, B.L. Farrugia, J.A. Broadbent, S. Pace, Z. Upton, N.H. Voelcker, Sensors and imaging for wound healing: a review. Biosens. Bioelectron. 41, 30–42 (2013)

    Article  Google Scholar 

  32. L. Van der Schueren, K. Hemelsoet, V. Van Speybroeck, K. De Clerck, The influence of a polyamide matrix on the halochromic behaviour of the pH-sensitive azo dye Nitrazine Yellow. Dyes Pigments 94, 443–451 (2012)

    Article  Google Scholar 

  33. L. Van der Schueren, T. De Meyer, I. Steyaert, O. Ceylan, K. Hemelsoet, V. Van Speybroeck, K. De Clerck, Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohydr. Polym. 91, 284–293 (2013)

    Article  Google Scholar 

  34. A. Agarwal, A. Raheja, T.S. Natarajan, T.S. Chandra, Development of universal pH sensing electrospun nanofibers. Sensors Actuators B Chem. 161, 1097–1101 (2012)

    Article  Google Scholar 

  35. S. Trupp, M. Alberti, T. Carofiglio, E. Lubian, H. Lehmann, R. Heuermann, E. Yacoub-George, K. Bock, G.J. Mohr, Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sensors Actuators B Chem. 150, 206–210 (2010)

    Google Scholar 

  36. X. Liang, Y. Li, W. Peng, J. Bai, C. Zhang, Q. Yang, Efficient method for fabrication of fluorescein derivative/PDAC composite nanofibers and characteristics of their photoluminescent properties. Eur. Polym. J. 44, 3156–3162 (2008)

    Article  Google Scholar 

  37. S. Tao, G. Li, J. Yin, Fluorescent nanofibrous membranes for trace detection of TNT vapor. J. Mater. Chem. 17, 2730–2736 (2007)

    Article  Google Scholar 

  38. Y. Yang, X. Fan, Y. Long, K. Su, D. Zou, N. Li, J. Shou, K. Li, F. Liu, A simple fabrication of electrospun nanofiber sensing materials based on fluorophore-doped polymer. J. Mater. Chem. 19, 7290–7295 (2009)

    Article  Google Scholar 

  39. A. Camposeo, F. Di Benedetto, R. Stabile, R. Cingolani, D. Pisignano, Electrospun dye-doped polymer nanofibers emitting in the near infrared. Appl. Phys. Lett. 90, 143115 (2007)

    Article  Google Scholar 

  40. Y. Ner, J.G. Grote, J.A. Stuart, G.A. Sotzing, Enhanced fluorescence in electrospun dye-doped DNA nanofibers. Soft Matter 4, 1448–1453 (2008)

    Article  Google Scholar 

  41. T. De Meyer, K. Hemelsoet, L. Van der Schueren, P. Ewald, K. De Clerck, V. Van Speybroeck, Investigating the halochromic properties of azo dyes in an aqueous environment by using a combined experimental and theoretical approach. Chem. Eur. J. 18, 8120–8129 (2012)

    Article  Google Scholar 

  42. T. De Meyer, K. Hemelsoet, V. Van Speybroeck, K. De Clerck, Substituent effects on absorption spectra of pH indicators: an experimental and computational study of sulfonphthaleine dyes. Dyes Pigments 102, 241–250 (2014)

    Article  Google Scholar 

  43. A. Lobnik, I. Oehme, I. Murkovic, O.S. Wolfbeis, pH optical sensors based on sol-gels: chemical doping versus covalent immobilization. Anal. Chim. Acta. 367, 159–165 (1998)

    Article  Google Scholar 

  44. C. Munkholm, D.R. Walt, A fiber-optic sensor for CO2 measurement. Talanta 35(2), 109–112 (1988)

    Article  Google Scholar 

  45. T. Carofiglio, C. Fregonese, G.J. Mohr, F. Rastrelli, U. Tonellato, Optical sensor arrays: one-pot, multiparallel synthesis and cellulose immobilization of pH and metal ion sensitive azo-dyes. Tetrahedron 62, 1502–1507 (2006)

    Article  Google Scholar 

  46. X. Wang, C. Drew, S.-H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Electrospinning technology: a novel approach to sensor application. J. Macromol. Sci. A39, 1251–1258 (2002)

    Article  Google Scholar 

  47. X. Wang, C. Drew, S.-H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275 (2002)

    Article  Google Scholar 

  48. C. Zhang, Y. Li, W. Wang, N. Zhan, N. Xiao, S. Wang, Y. Li, Q. Yang, A novel two-nozzle electrospinning process for preparing microfiber reinforced pH-sensitive nano-membrane with enhanced mechanical property. Eur. Polym. J. 47, 2228–2233 (2011)

    Article  Google Scholar 

  49. D.A. Ondigo, Z.R. Tshentu, N. Torto, Electrospun nanofiber based colorimetric probe for rapid detection of Fe2+ in water. Anal. Chim. Acta. 804, 228–234 (2013)

    Article  Google Scholar 

  50. G.R. Strobl, The Physics of Polymers: Concepts for Understanding Their Structure and Behavior (Springer, Berlin/Heidelberg, 2007)

    Google Scholar 

  51. Y. Long, H. Chen, Y. Yang, H. Wang, Y. Yang, N. Li, K. Li, J. Pei, F. Liu, Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules 42, 6501–6509 (2009)

    Article  Google Scholar 

  52. H. Wang, Z. Peng, Y. Long, H. Chen, Y. Yang, N. Li, F. Liu, A simple and reusable fluorescent sensor for heme proteins based on a conjugated polymer-doped electrospun nanofibrous membrane. Talanta 94, 216–222 (2012)

    Article  Google Scholar 

  53. J. Yoon, S.K. Chae, J.-M. Kim, Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 129, 3038–3039 (2007)

    Article  Google Scholar 

  54. S.K. Chae, H. Park, J. Yoon, C.H. Lee, D.J. Ahn, J.-M. Kim, Polydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications. Adv. Mater. 19, 521–524 (2007)

    Article  Google Scholar 

  55. Q. Xu, S. Lee, Y. Cho, M.H. Kim, J. Bouffard, J. Yoon, Polydiacetylene-based colorimetric and fluorescent chemosensor for the detection of carbon dioxide. J. Am. Chem. Soc. 135, 17751–17754 (2013)

    Article  Google Scholar 

  56. R. Röck, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108, 705–725 (2008)

    Article  Google Scholar 

  57. L.I. Kazakova, L.I. Shabarchina, S. Anastasova, A.M. Pavlov, P. Vadgama, A.G. Skirtach, G.B. Sukhorukov, Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal. Bioanal. Chem. 405, 1559–1568 (2013)

    Article  Google Scholar 

  58. J.V. Edwards, N. Prevost, K. Sethumadhavan, A. Ullah, B. Condon, Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose 20, 1223–1235 (2013)

    Article  Google Scholar 

  59. E. Osti, Skin pH variations from the acute phase to re-epithelialization in burn patients treated with new materials (Burnshield®, semipermeable adhesive film, Dermasilk®, and Hyalomatrix®). Non-invasive preliminary experimental clinical trial. Ann. Burns Fire Disaster 21(2), 73–77 (2008)

    Google Scholar 

  60. Fraunhofer-Gesellschaft, Research News Nov 02 2010. Consulted on the 7th of September 2013, http://www.fraunhofer.de/en/press/research-news/2010/11/dressing-indicates-infections.html (2010)

  61. N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010)

    Article  Google Scholar 

  62. Y.-F. Goh, I. Shakir, R. Hussain, Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 48, 3027–3054 (2013)

    Article  Google Scholar 

  63. P. Zahedi, I. Rezaeian, S.-O. Ranaei-Siadat, S.-H. Jafari, P. Supaphol, A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 21, 77–95 (2010)

    Article  Google Scholar 

  64. S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49, 5603–5621 (2008)

    Article  Google Scholar 

  65. C.H.T. Vu, K. Won, Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem. 140, 52–56 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

Financial support from The Agency for Innovation by Science and Technology of Flanders (IWT) is gratefully acknowledged (Strategic Basic Research Grant 111158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen De Clerck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steyaert, I., Rahier, H., De Clerck, K. (2015). Nanofibre-Based Sensors for Visual and Optical Monitoring. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_7

Download citation

Publish with us

Policies and ethics