Skip to main content

Photoconductive Electrospun Titania Nanofibres to Develop Gas Sensors Operating at Room Temperature

  • Chapter

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The use of nanostructured materials, such as those based on metal or metal oxides, has opened a new way to enhance the performances of chemical sensors making them able to detect gases at ppb level. In this type of sensors, the conductance is modulated by the presence of analytes that interact through physical-chemical processes of absorption and desorption, inducing changes in mobility or carriers density. The nano-scale dimensions of these materials enhance the interaction phenomena in terms of time and responses. In order to activate the physical/chemical interaction processes of the sensors based on oxide materials, an high operating temperature (200–400 °C) is required, resulting in significant power consumption. In this chapter, we report our recent studies on the possibility to exploit the titania photoconduction to develop gas sensor devices working at room temperature. We present the characterization of two different photoconductive Electrospun sensing layers: the first one is composed of titania nanofibres (TiO2 NFs) and the second of TiO2 NFs decorated with Pt nanoparticles (PtNPs) ranging from 5 to 10 nm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Pirrone, W. Aas, S. Cinnirella, R. Ebinghaus, I.M. Hedgecock, J. Pacyna, F. Sprovieri, E. Sunderland, Toward the next generation of air quality monitoring: mercury. Atmos. Environ. (2013). doi:10.1016/j.atmosenv.2013.06.053

    Google Scholar 

  2. S. Nativi, P. Mazzetti, M. Craglia, N. Pirrone, The GEOSS solution for enabling data interoperability and integrative research. Environ. Sci. Pollut. Res. 21(6), 4177–4192 (2014). ISSN: 1614-7499

    Google Scholar 

  3. D. Kohl, Function and applications of gas sensors. J. Phys. D Appl. Phys. 34, R125 (2001)

    Article  Google Scholar 

  4. E. Traversa, Y. Sadaoka, M.C. Carotta, G. Martinelli, Environmental monitoring field tests using screen-printed thick-film sensors based on semiconducting oxides. Sens. Actuators B 65, 181–185 (2000)

    Article  Google Scholar 

  5. M.C. Carotta, G. Martinelli, L. Crema, C. Malagu’, M. Merli, G. Ghiotti, E. Traversa, Nanostructured thick film gas sensors for atmospheric pollutant monitoring: quantitative analysis on field tests. Sens. Actuators B 76, 336–342 (2001)

    Article  Google Scholar 

  6. X.J. Huang, Y.K. Choi, Chemical sensors based on nanostructured materials. Sens. Actuators B 122, 659–671 (2007)

    Article  Google Scholar 

  7. M. Breedon, P. Spizzirri, M. Taylor, J. Du Plessis, D. McCulloch, J. Zhu, L. Yu, Z. Hu, C. Rix, W. Wlodarski, K. Kalantar-zadeh, Synthesis of nanostructured tungsten oxide thin films: a simple, controllable, inexpensive, aqueous sol–gel method. Cryst. Growth Des. 10, 430–439 (2010)

    Google Scholar 

  8. T.A. Rajesh, D. Kumar, Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B 136(1), 275–286 (2009)

    Article  Google Scholar 

  9. H. Jane, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)

    Article  Google Scholar 

  10. Hua Bai, Gaoquan Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007)

    Article  Google Scholar 

  11. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)

    Article  Google Scholar 

  12. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B 121(1), 18–35 (2007)

    Article  Google Scholar 

  13. Y. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike, K. Natukawa, Micro-machined gas sensor array based on metal film micro-heater. Sens. Actuators B 79, 175–181 (2001)

    Article  Google Scholar 

  14. T. Zhai, Z. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, A comprehensive review of one-dimensional metaloxide nanostructure photodetectors. Sensors 9, 6504–6529 (2009)

    Article  Google Scholar 

  15. E. Comini, G. Faglia, G. Sberveglieri, UV activation of tin oxide thin films for NO2 sensing at low temperatures. Sens. Actuators B 78, 73–77 (2001)

    Article  Google Scholar 

  16. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 41, 2405–2408 (2002)

    Article  Google Scholar 

  17. M. Yang, T.F. Xie, L. Peng, Y. Zhao, D. Wang, Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres. Appl. Phys. A 89, 427–430 (2007)

    Article  Google Scholar 

  18. Y. Gui, S. Li, J. Xu, C. Li, Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature. Microelectron. J. 39, 1120–1125 (2008)

    Article  Google Scholar 

  19. L. Peng, T.F. Xie, M. Yang, P. Wang, S. Pang, D.J. Wang, Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature. Sens. Actuators B 131, 660–664 (2008)

    Article  Google Scholar 

  20. R. Bajpai, A. Motayed, A.V. Davydov, V.P. Oleshko, G.S. Aluri, K.A. Bertness, M.V. Rao, M.E. Zaghloul, UV-assisted alcohol sensing using SnO2 functionalized GaN nanowire devices. Sens. Actuators B 171–172, 499–507 (2012)

    Article  Google Scholar 

  21. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000)

    Article  Google Scholar 

  22. T.Y. Yang, H.M. Lin, B.Y. Wei, C.Y. Wu, C.K. Lin, UV enhancement of the gas sensing properties of nano-TiO2. Rev. Adv. Mater. Sci. 4, 48–54 (2003). ISSN 1605-8127

    Google Scholar 

  23. M. Hirano, K. Matsushima, Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles. J. Nanosci. Nanotechnol. 6, 762–770 (2006)

    Article  Google Scholar 

  24. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dyesensitized solar cells. Nano Lett. 6, 215–218 (2006)

    Article  Google Scholar 

  25. N.L. Lala, R. Jose, M.M. Yusoff, S. Ramakrishna, Continuous tubular nanofibres of vanadium pentoxide by electrospinning for energy storage devices. J. Nanopart. Res. 14, 1201–1210 (2012)

    Article  Google Scholar 

  26. Renyuan Zhang, A.A. Elzatahry, S.S. Al-Deyab, Dongyuan Zhao, Mesoporous titania: from synthesis to application. Nano Today 7(4), 344–366 (2012)

    Google Scholar 

  27. E. Stathatos, P. Lianos, F.D. Monte, D. Levy, D. Tsiourvas, Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates. Langmuir 13, 4295–4300 (1997)

    Article  Google Scholar 

  28. Y. Yue, Z. Gao, Synthesis of mesoporous TiO2 with a crystalline framework. Chem. Commun. 18, 1755–1756 (2000)

    Article  Google Scholar 

  29. X. Chen, S.S. Mao, Synthesis of titanium dioxide (TiO2) nanomaterials. J. Nanosci. Nanotechnol. 6, 906–925 (2006)

    Article  Google Scholar 

  30. K.M. Sawicka, P. Gouma, Electrospun composite nanofibres for functional applications. J. Nanopart. Res. 8, 769–778 (2006)

    Article  Google Scholar 

  31. S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Zuwei Ma, R. Ramakrishna, Electrospun nanofibres: solving global issues. Mater. Today 9, 40–50 (2006)

    Article  Google Scholar 

  32. A.Z. Sadek, H. Zheng, K. Latham, W. Wlodarski, K. Kalantar-zadeh, Anodization of Ti thin film deposited on ITO. Langmuir 25, 509–514 (2009)

    Google Scholar 

  33. P. Lu, B. Ding, Applications of electrospun fibres. Recent Pat. Nanotechnol. 2, 169–182 (2008)

    Article  Google Scholar 

  34. E. Zampetti, A. Muzyczuk, A. Macagnano, S. Pantalei, S. Scalese, C. Spinella, A. Bearzotti, Effects of temperature and humidity on electrospun conductive nanofibres based on polyaniline blends. J. Nanopart. Res. 13, 6193–6200 (2011)

    Article  Google Scholar 

  35. Bin Ding, Moran Wang, Xianfeng Wang, Jianyong Yub, Gang Suna, Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 13(11), 16–27 (2010)

    Article  Google Scholar 

  36. D. Li, Y. Xia, Fabrication of titania nanofibres by electrospinning. Nano Lett. 3, 555–560 (2003)

    Article  Google Scholar 

  37. Ying Wang, Wenzehao Jia, Timothy Strout, Ashely Schempf, Heng Zhang, Baikun Li, Junhong Cui, Yu Lei, Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibres. Electroanalysis 21(12), 1432–1438 (2009)

    Article  Google Scholar 

  38. Y. Zheng, J. Wang, P. Chen, C. Li, X. Li, Structure and gas-sensing behavior of electrospun titania-doped chromium oxide fibres. Int. J. Appl. Ceram. Technol. 10, E304–E309 (2013)

    Article  Google Scholar 

  39. Il-Doo Kim, Avner Rothschild, Byong Hong Lee, Dong Young Kim, Seong Mu Jo, H.L. Tuller, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibres. Nano Lett. 6(9), 2009–2013 (2006)

    Article  Google Scholar 

  40. O. Landau, A. Rothschild, E. Zussman, Electrospun nanostructured TiO2 gas sensors. IEEE Sensors Conference 2008, 863–865 (2008)

    Google Scholar 

  41. P. Frontera, S. Trocino, A. Donato, P.L. Antonucci, M. Lo Faro, G. Squadrito, G. Neri, Oxygen-sensing properties of electrospun CNTs/PVAc/TiO2 composites. Electron. Mater. Lett. 10(1), 305–313 (2014)

    Article  Google Scholar 

  42. Jaehyun Moon, Jin-Ah Park, Su-Jae Lee, Taehyoung Zyung, Il-Doo Kim, Pd-doped TiO2 nanofibre networks for gas sensor applications. Sens. Actuators B Chem. 149(1), 301–305 (2010)

    Article  Google Scholar 

  43. Jianan Deng, Lili Wang, Zheng Lou, Tong Zha, Design of CuO–TiO2 heterostructure nano fibres and their sensing performance. J. Mater. Chem. A 2, 9030 (2014)

    Article  Google Scholar 

  44. S.S. Batool, Z. Imran, M. Israr Qadir, M. Usman, H. Jamil, M.A. Ra, M.M. Hassan, M. Willander, Comparative analysis of Ti, Ni, and Au electrodes on characteristics of TiO2 nano fibres for humidity sensor application. J. Mater. Sci. Technol. 29(5), 411–e414 (2013)

    Article  Google Scholar 

  45. E. Zampetti, S. Pantalei, A. Muzyczuk, A. Bearzotti, F. De Cesare, C. Spinella, A. Macagnano, A high sensitive NO2 gas sensor based on PEDOT–PSS/TiO2 nanofibres. Sens. Actuators B 176, 390–398 (2013)

    Article  Google Scholar 

  46. E. Zampetti, A. Macagnano, A. Bearzotti, Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature. J. Nanopart. Res. 15(4), (2013), art. no. 1566

    Google Scholar 

  47. I. Fratoddi, A. Macagnano, C. Battocchio, E. Zampetti, I. Venditti, M.V. Russo, A. Bearzotti, Platinum nanoparticles on electrospun titania nanofibres as hydrogen sensing materials working at room temperature. Nanoscale 6, 9177–9184 (2014). doi:10.1039/C4NR01400F

    Article  Google Scholar 

  48. D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. J Photochem. Photobiol. C 6, 186–205 (2005)

    Article  Google Scholar 

  49. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  Google Scholar 

  50. M.A. Henderson, The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002)

    Article  Google Scholar 

  51. E. Comini, A. Cristalli, G. Faglia, G. Sberveglieri, Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sens. Actuators B 65, 260–263 (2000)

    Article  Google Scholar 

  52. Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, W. Yu, Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens. Actuators B 143, 635 (2010)

    Article  Google Scholar 

  53. X. Liu, J. Zhang, X. Guo, S. Wu, S. Wang, Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2, 1178 (2010)

    Article  Google Scholar 

  54. Y.H. Lin, Y.C. Hsueh, P.S. Lee, C.C. Wang, J.M. Wu, T.P. Perng, H.C. Shih, Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. J. Mater. Chem. 21, 10552 (2011)

    Article  Google Scholar 

  55. X. Xue, Z. Chen, C. Ma, L. Xing, Y. Chen, Y. Wang, T. Wang, One-step synthesis and gas-sensing characteristics of uniformly loaded Pt@SnO2 nanorods. J. Phys. Chem. C 114, 3968 (2010)

    Article  Google Scholar 

  56. F.A. Lewis, The Palladium-Hydrogen System (Academic, London/New York, 1967)

    Google Scholar 

  57. A. Abburi, W.J. Yeh, Temperature and pore size dependence on the sensitivity of a hydrogen sensor based on nanoporous platinum thin films. IEEE Sens. J. 12, 2625 (2012)

    Article  Google Scholar 

  58. A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1, 382 (2009)

    Article  Google Scholar 

  59. C.J. Brinker, G.C. Frye, A.J. Hurd, C.S. Ashley, Preparation and characterization fundamentals of sol-gel dip coating. Thin Solid Films 201, 97–108 (1991)

    Article  Google Scholar 

  60. R.N. Blumenthal, J. Baukus, W.M. Hirthe, Defect structure of nonstoichiometric rutile, TiO2-x. J. Electrochem. Soc. 114, 172 (1967)

    Article  Google Scholar 

  61. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, Titanium dioxide for solar-hydrogen II. Defect chemistry. Int. J. Hydrogen Energy 32, 2630 (2007)

    Article  Google Scholar 

  62. U. Roland, T. Braunschweig, F. Roessner, On the nature of spilt-over hydrogen. J. Mol. Catal. A: Chem. 127, 61–84 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our colleagues of the Institute of Atmospheric Pollution Research of the National Research Council for the voluntary and friendly cooperation in organizing the EHPS Workshop in Rome 2014. We want to thank, too, the Director Nicola Pirrone for having believed in that event, thus significantly contributing to its success. Finally, we are grateful to Ilaria Fratoddi, Iole Venditti and Maria Vittoria Russo of “La Sapienza” University of Rome, Department of Chemistry, for the Platinum nanoparticles preparation and characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Zampetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zampetti, E., Macagnano, A., Bearzotti, A. (2015). Photoconductive Electrospun Titania Nanofibres to Develop Gas Sensors Operating at Room Temperature. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_5

Download citation

Publish with us

Policies and ethics