Skip to main content

Controlling the Nanostructure of Electrospun Polymeric Fibers

  • Chapter
Electrospinning for High Performance Sensors

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The high strain rate extensional flow of a semi-dilute polymer solution can cause substantial stretching and disentanglement of the polymer network. In this study, we conducted a theoretical and experimental investigation of the effects of electrospinning, a flow governed by high strain rate and rapid evaporation, on the polymer matrix of the resulting nanofibers. Modeling of the dynamic evolution of the entangled polymer network in an electrospinning jet predicted substantial longitudinal stretching and radial contraction of the network, a transformation from an equilibrium state to an almost fully-stretched state. This prediction was verified by X-ray phase-contrast imaging of electrospinning jets, which revealed a noticeable increase in polymer concentration at the jet center, within a short distance from the jet start. Additionally, polymer entanglement loss in consequence of stretching was evidenced in jet fragmentation and appearance of short nanofibers, affecting the entanglements density and molecular orientation of as-spun fibers. The stretching model was expanded to semi-flexible conjugated polymer chains, and scanning near field optical microscopy of electrospun nanofibers of such optically active polymers revealed that the network’s dense elongated conformation effectively remains after jet solidification. By tuning the electrospinning conditions, the unique size-dependent properties of nanofibers can be controlled and improved, potentially leading to novel applications in engineering and life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.L. Andrady, Science and Technology of Polymer Nanofibers (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  2. J. Stanger, N. Tucker, M. Staiger, Electrospinning. Rapra Rev. Rep. 16(10) (2005)

    Google Scholar 

  3. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003). doi:10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  4. I.U.G. Gogotsi, Nanotubes and Nanofibers. Advanced materials series (CRC Taylor & Francis, Boca Raton, 2006)

    Book  Google Scholar 

  5. M. Burman, A. Arinstein, E. Zussman, Do surface effects explain the unique elasticity of polymer nanofibers? Europhys. Lett. 96, 16006 (2011)

    Article  Google Scholar 

  6. Y. Liu, S. Chen, E. Zussman, C.S. Korach, W. Zhao, M. Rafailovich, Diameter-dependent modulus and melting behavior in electrospun semicrystalline polymer fibers. Macromolecules 44(11), 4439–4444 (2011). doi:10.1021/ma200262z

    Article  Google Scholar 

  7. Y. Ji, C. Li, G. Wang, J. Koo, S. Ge, B. Li, J. Jiang, B. Herzberg, T. Klein, S. Chen, J.C. Sokolov, M.H. Rafailovich, Confinement-induced super strong PS/MWNT composite nanofibers. Europhys. Lett. 84(5), 56002 (2008). doi:Artn 56002 doi:10.1209/0295-5075/84/56002

  8. M. Burman, A. Arinstein, E. Zussman, Free flight of an oscillated string pendulum as a tool for the mechanical characterization of an individual polymer nanofiber. Appl. Phys. Lett. 93(19), 193118 (2008). doi:Artn 193118 doi:10.1063/1.3000016

  9. A. Arinstein, M. Burman, O. Gendelman, E. Zussman, Effect of supramolecular structure on polymer nanofibre elasticity. Nat. Nanotechnol. 2(1), 59–62 (2007). doi:10.1038/nnano.2006.172

    Article  Google Scholar 

  10. X.M. Sui, H.D. Wagner, Tough nanocomposites: the role of carbon nanotube type. Nano Lett. 9(4), 1423–1426 (2009). doi:10.1021/Nl803241y

    Article  Google Scholar 

  11. X.M. Sui, E. Wiesel, H.D. Wagner, Enhanced mechanical properties of electrospun nano-fibers through NaCl mediation. J. Nanosci. Nanotechnol. 11(9), 7931–7936 (2011). doi:10.1166/jnn.2011.4760

    Article  Google Scholar 

  12. A. Camposeo, I. Greenfeld, F. Tantussi, S. Pagliara, M. Moffa, F. Fuso, M. Allegrini, E. Zussman, D. Pisignano, Local mechanical properties of electrospun fibers correlate to their internal nanostructure. Nano Lett. 13(11), 5056–5062 (2013). doi:10.1021/Nl4033439

    Article  Google Scholar 

  13. A. Camposeo, I. Greenfeld, F. Tantussi, M. Moffa, F. Fuso, M. Allegrini, E. Zussman, D. Pisignano, Conformational evolution of elongated polymer solutions tailors the polarization of light-emission from organic nanofibers. Macromolecules 47(14), 4704–4710 (2014). doi:http://dx.doi.org/10.1021/ma500390v

  14. T. Han, A.L. Yarin, D.H. Reneker, Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49(6), 1651–1658 (2008). doi:10.1016/j.polymer.2008.01.035

    Article  Google Scholar 

  15. P. Gupta, C. Elkins, T.E. Long, G.L. Wilkes, Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13), 4799–4810 (2005). doi:10.1016/j.polymer.2005.04.021

    Article  Google Scholar 

  16. D.H. Reneker, A.L. Yarin, E. Zussman, H. Xu, Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007). doi:10.1016/S0065-2156(06)41002-4

    Article  Google Scholar 

  17. D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87(9), 4531–4547 (2000)

    Article  Google Scholar 

  18. L.M. Bellan, H.G. Craighead, J.P. Hinestroza, Direct measurement of fluid velocity in an electrospinning jet using particle image velocimetry. J. Appl. Phys. 102(9), 094308 (2007). doi:Artn 094308 doi:10.1063/1.2799059

  19. M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13(8), 2201–2220 (2001)

    Article  Google Scholar 

  20. Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42(25), 9955–9967 (2001)

    Article  Google Scholar 

  21. I. Greenfeld, A. Arinstein, K. Fezzaa, M.H. Rafailovich, E. Zussman, Polymer dynamics in semidilute solution during electrospinning: a simple model and experimental observations. Phys. Rev. E 84(4), 041806 (2011). doi:Artn 041806 doi:10.1103/Physreve.84.041806

  22. E. Zussman, A. Arinstein, Electrospun polymer nanofibers: mechanical and thermodynamic perspectives. J. Polym. Sci. Part B Polym. Phys. 49(10), 691–707 (2011). doi:10.1002/polb.22247

    Article  Google Scholar 

  23. A.J. Guenthner, S. Khombhongse, W.X. Liu, P. Dayal, D.H. Reneker, T. Kyu, Dynamics of hollow nanofiber formation during solidification subjected to solvent evaporation. Macromol. Theory Simul. 15(1), 87–93 (2006). doi:10.1002/mats.200500034

    Article  Google Scholar 

  24. P. Dayal, T. Kyu, Dynamics and morphology development in electrospun fibers driven by concentration sweeps. Phys. Fluids 19(10), 107106 (2007). doi:Artn 107106 doi:10.1063/1.2800277

  25. P. Dayal, J. Liu, S. Kumar, T. Kyu, Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 40(21), 7689–7694 (2007). doi:10.1021/Ma0714181

    Article  Google Scholar 

  26. S. Koombhongse, W.X. Liu, D.H. Reneker, Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. Part B Polym. Phys. 39(21), 2598–2606 (2001)

    Article  Google Scholar 

  27. C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2), 573–578 (2004). doi:10.1021/Ma0351975

    Article  Google Scholar 

  28. I. Greenfeld, K. Fezzaa, M.H. Rafailovich, E. Zussman, Fast X-ray phase-contrast imaging of electrospinning polymer jets: measurements of radius, velocity, and concentration. Macromolecules 45(8), 3616–3626 (2012). doi:10.1021/Ma300237j

    Article  Google Scholar 

  29. I. Greenfeld, E. Zussman, Polymer entanglement loss in extensional flow: evidence from electrospun short nanofibers. J. Polym. Sci. Part B Polym. Phys. 51(18), 1377–1391 (2013). doi:10.1002/polb.23345

    Article  Google Scholar 

  30. I. Greenfeld, Polymer network dynamics during electrospinning and its effect on the fibers nanostructure: Modeling, simulation and experiments. Mechanical Engineering. PhD thesis, Technion, Haifa, 2013

    Google Scholar 

  31. V.N. Kirichenko, I.V. Petrianovsokolov, N.N. Suprun, A.A. Shutov, Asymptotic radius of slightly conducting liquid jet in an electric-field. Dokl. Akad. Nauk SSSR 289(4), 817–820 (1986)

    Google Scholar 

  32. A.F. Spivak, Y.A. Dzenis, Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field. Appl. Phys. Lett. 73(21), 3067–3069 (1998)

    Article  Google Scholar 

  33. M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 13(8), 2221–2236 (2001)

    Article  Google Scholar 

  34. F.J. Higuera, Stationary viscosity-dominated electrified capillary jets. J. Fluid Mech. 558, 143–152 (2006). doi:10.1017/S0022112006000024

    Article  Google Scholar 

  35. S.N. Reznik, E. Zussman, Capillary-dominated electrified jets of a viscous leaky dielectric liquid. Phys. Rev. E. 81(2), 026313 (2010). doi:Artn 026313 doi:10.1103/Physreve.81.026313

  36. P.G. de Gennes, Coil-stretch transition of dilute flexible polymers under ultrahigh velocity-gradients. J. Chem. Phys. 60(12), 5030–5042 (1974)

    Article  Google Scholar 

  37. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)

    Google Scholar 

  38. R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science. Topics in polymer science (Oxford University Press, New York, 2000)

    Google Scholar 

  39. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford/New York, 2003)

    Google Scholar 

  40. M.G. McKee, G.L. Wilkes, R.H. Colby, T.E. Long, Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37(5), 1760–1767 (2004). doi:10.1021/Ma035689h

    Article  Google Scholar 

Download references

Acknowledgements

The generous financial help of the Technion, the United States-Israel Binational Science Foundation, the RBNI-Russell Berrie Nanotechnology Institute, and the Israel Science Foundation is gratefully acknowledged. We thank Dr. Arkadii Arinstein for insightful discussions on polymer dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Greenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greenfeld, I., Zussman, E. (2015). Controlling the Nanostructure of Electrospun Polymeric Fibers. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_2

Download citation

Publish with us

Policies and ethics