Skip to main content

Co-electrospun Brain Mimetic Hollow Microfibres Fibres for Diffusion Magnetic Resonance Imaging

  • Chapter
Electrospinning for High Performance Sensors

Abstract

Diffusion magnetic resonance imaging (dMRI) provides a non-invasive tool to explore biological tissues, including brain with its highly organised hierarchical fibrous structures. An MR phantom is a test object with known size and material for the calibration of MR scanners and the validation of image processing algorithms. Despite extensive research on the development of brain-mimicking phantoms, there are significant problems with using the existing phantoms for dMRI. This chapter is designed to lead the reader through the development of brain-mimetic phantoms for application in dMRI. Our starting point is a brief introduction to the dMRI technique and phantoms previously developed to mimic brain tissues. The second section focuses on the preparation and characterization of novel physical phantoms composed of co-electrospun hollow microfibres. Finally, the evaluation of the developed co-electrospun phantoms is presented in the third section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Mori, P.B. Barker, Diffusion magnetic resonance imaging: its principle and applications. Anat. Rec. 257(3), 102–109 (1999). doi:10.1002/(sici)1097-0185(19990615)257:3<102::aid-ar7>3.0.co;2-6

  2. G. García-Martí, A. Alberich-Bayarri, L. Martí-Bonmatí, Brain structure MR imaging methods: morphometry and tractography. Nov. Front. Adv. Neuroimaging (2013). doi:10.5772/53079

    Google Scholar 

  3. H. Johansen-Berg, T.E.J. Behrens (eds.), Diffusion MRI: From Quantitative Measurement to In-Vivo Neuroanatomy The Validation of Tractography (Academic, Amsterdam, 2009)

    Google Scholar 

  4. F.-L. Zhou, P.L. Hubbard, S.J. Eichhorn, G.J.M. Parker, Coaxially electrospun axon-mimicking fibers for diffusion magnetic resonance imaging. ACS Appl. Mater. Interfaces 4(11), 6311–6316 (2012). doi:10.1021/am301919s

    Article  Google Scholar 

  5. S. Boujraf, R. Luypaert, H. Eisendrath, M. Osteaux, Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems. MAGMA 13(2), 82–90 (2001). doi:10.1007/bf02668156

    Article  Google Scholar 

  6. Y. Assaf, R.Z. Freidlin, G.K. Rohde, P.J. Basser, New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004). doi:10.1002/mrm.20274

    Article  Google Scholar 

  7. M. Descoteaux, E. Angelino, S. Fitzgibbons, R. Deriche, Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006). doi:10.1002/mrm.20948

    Article  Google Scholar 

  8. E. Fieremans, Y. De Deene, S. Delputte, M.S. Özdemir, Y. D’Asseler, J. Vlassenbroeck, K. Deblaere, E. Achten, I. Lemahieu, Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J. Magn. Reson. 190(2), 189–199 (2008). doi:10.1016/j.jmr.2007.10.014

    Article  Google Scholar 

  9. P. Pullens, A. Roebroeck, R. Goebel, Ground truth hardware phantoms for validation of diffusion-weighted MRI applications. J. Magn. Reson. Imaging 32(2), 482–488 (2010). doi:10.1002/jmri.22243

    Article  Google Scholar 

  10. C. Poupon, B. Rieul, I. Kezele, M. Perrin, F. Poupon, J.-F. Mangin, New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. Magn. Reson. Med. 60(6), 1276–1283 (2008). doi:10.1002/mrm.21789

    Article  Google Scholar 

  11. P. Fillard, M. Descoteaux, A. Goh, S. Gouttard, B. Jeurissen, J. Malcolm, A. Ramirez-Manzanares, M. Reisert, K. Sakaie, F. Tensaouti, T. Yo, J.-F. Mangin, C. Poupon, Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56(1), 220–234 (2011). doi:10.1016/j.neuroimage.2011.01.032

    Article  Google Scholar 

  12. E. Fieremans, Y.D. Deene, S. Delputte, M.S. Özdemir, E. Achten, I. Lemahieu, The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging. Phys. Med. Biol. 53(19), 5405 (2008)

    Article  Google Scholar 

  13. A. Ye, P.L. Hubbard Cristinacce, F.-L. Zhou, Z. Yin, G.J.M. Parker, R. Magin, Diffusion tensor MRI phantom exhibits anomalous diffusion. The Proceeding of The 36th Annual International IEEE EMBS Conference, Chicago, IL, USA, 26–30 August 2014, pp. 746–749

    Google Scholar 

  14. A. Arinstein, R. Avrahami, E. Zussman, Buckling behaviour of electrospun microtubes: a simple theoretical model and experimental observations. J. Phys. D. Appl. Phys. 42(1), 015507 (2009)

    Article  Google Scholar 

  15. S.N. Reznik, A.L. Yarin, E. Zussman, L. Bercovici, Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Phys. Fluids 18(6), 062101 (2006). doi:10.1063/1.2206747

    Article  Google Scholar 

  16. Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, P.J. Basser, Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008). doi:10.1002/mrm.21577

    Article  Google Scholar 

  17. P.L. Hubbard, F-L. Zhou, S.J. Eichhorn, G.J.M. Parker, Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magn. Reson. Med. 73(1), 299–305 (2015). doi:10.1002/mrm.25107

  18. S. Richardson, B. Siow, A.M. Batchelor, M.F. Lythgoe, D.C. Alexander, A viable isolated tissue system: a tool for detailed MR measurements and controlled perturbation in physiologically stable tissue. Magn. Reson. Med. 69(6), 1603–1610 (2013). doi:10.1002/mrm.24410

    Article  Google Scholar 

  19. D.K. Jones, Studying connections in the living human brain with diffusion MRI. Cortex 44(8), 936–952 (2008). doi:10.1016/j.cortex.2008.05.002

    Article  Google Scholar 

  20. J.A. Perge, J.E. Niven, E. Mugnaini, V. Balasubramanian, P. Sterling, Why do axons differ in caliber? J. Neurosci. 32(2), 626–638 (2012). doi:10.1523/jneurosci. 4254-11.2012

    Article  Google Scholar 

Download references

Acknowledgments

The research was partly funded by the project FP7 “CONNECT” (grant number 238292), by a research grant from Philips Healthcare and by CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Lei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, FL., Hubbard Cristinacce, P.L., Eichhorn, S.J., Parker, G.J.M. (2015). Co-electrospun Brain Mimetic Hollow Microfibres Fibres for Diffusion Magnetic Resonance Imaging. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_12

Download citation

Publish with us

Policies and ethics