Skip to main content

Facile and Ultrasensitive Sensors Based on Electrospinning-Netting Nanofibers/Nets

  • Chapter
Electrospinning for High Performance Sensors

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Due to rapid growth of industrialization, urbanization and modern agricultural development, there has resulted a heavy backlog of gaseous and liquid pollution in all over the world and threated the health of human beings. Driven by the actual demand, the sensors possess good portability, easy usability, excellent selectivity and sensitivity for water and air pollution monitoring are highly desirable. Among versatile sensing platforms, quartz crystal microbalance sensors and colorimetric sensor gained increasing attention for their easy accessibility, favorable expansibility and good associativity. Based on above two platforms, nanofibrous materials have been choose as an idea substrate to either capture the marker or amplify the signal associated with detection. In this chapter, we reviewed recent progress in the development of electrospun nanofibrous materials having applications in two predominant sensing approaches (quartz crystal microbalance and colorimetric sensors), illustrate them with current examples showing how they have been applied, optimized and discuss their intrinsic fundamentals and optimal designs. Moreover, we will also highlight gaps requiring further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Holmes, Air pollution and forest water use. Nature 507(7491), E1–E2 (2014). doi:10.1038/nature13113

    Google Scholar 

  2. C.C. Macpherson, Climate change matters. J. Med. Ethics 40(4), 288–290 (2014). doi:10.1136/medethics-2012-101084

    Google Scholar 

  3. S. Rodrıguez, X. Querol, A. Alastuey, M.-M. Viana, M. Alarcón, E. Mantilla, C.R. Ruiz, Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci. Total Environ. 328(1–3), 95–113 (2004). doi:http://dx.doi.org/10.1016/S0048-9697(03)00411-X

    Google Scholar 

  4. M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008). doi:http://dx.doi.org/10.1016/j.envpol.2007.06.012

    Google Scholar 

  5. P.D. Noyes, M.K. McElwee, H.D. Miller, B.W. Clark, L.A. Van Tiem, K.C. Walcott, K.N. Erwin, E.D. Levin, The toxicology of climate change: environmental contaminants in a warming world. Environ. Int. 35(6), 971–986 (2009). doi:http://dx.doi.org/10.1016/j.envint.2009.02.006

    Google Scholar 

  6. W. Gan, M. Koehoorn, H. Davies, P. Demers, L. Tamburic, M. Brauer, Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Epidemiology 22(1), S30 (2011). doi:10.1097/1001.ede.0000391750.0000338925.0000391750f

    Google Scholar 

  7. P. Brown, Toxic Exposures: Contested Illnesses and the Environmental Health Movement (Columbia University Press, New York, 2013)

    Google Scholar 

  8. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92(3), 407–418 (2011). doi:http://dx.doi.org/10.1016/j.jenvman.2010.11.011

    Google Scholar 

  9. B. Wei, L. Yang, A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94(2), 99–107 (2010). doi:http://dx.doi.org/10.1016/j.microc.2009.09.014

    Google Scholar 

  10. C. Luo, C. Liu, Y. Wang, X. Liu, F. Li, G. Zhang, X. Li, Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 186(1), 481–490 (2011). doi:http://dx.doi.org/10.1016/j.jhazmat.2010.11.024

    Google Scholar 

  11. B.R. Gurjar, A. Jain, A. Sharma, A. Agarwal, P. Gupta, A.S. Nagpure, J. Lelieveld, Human health risks in megacities due to air pollution. Atmos. Environ. 44(36), 4606–4613 (2010). doi:http://dx.doi.org/10.1016/j.atmosenv.2010.08.011

    Google Scholar 

  12. H. Kan, R. Chen, S. Tong, Ambient air pollution, climate change, and population health in China. Environ. Int. 42(0), 10–19 (2012). doi:http://dx.doi.org/10.1016/j.envint.2011.03.003

    Google Scholar 

  13. M.H. Yu, H. Tsunoda, M. Tsunoda, Environmental Toxicology: Biological and Health Effects of Pollutants, 3rd edn. (Taylor & Francis, Boca Raton, 2011)

    Google Scholar 

  14. L.B. Lave, E.P. Seskin, Air Pollution and Human Health (Taylor & Francis, Boca Raton, 2013)

    Google Scholar 

  15. N.Z. Muller, R. Mendelsohn, W. Nordhaus, Environmental accounting for pollution in the United States economy. Am. Econ. Rev. 101(5), 1649–1675 (2011). doi:10.1257/aer.101.5.1649

    Google Scholar 

  16. T. Kjellstrom, A. Butler, R. Lucas, R. Bonita, Public health impact of global heating due to climate change: potential effects on chronic non-communicable diseases. Int. J. Public Health 55(2), 97–103 (2010). doi:10.1007/s00038-009-0090-2

    Google Scholar 

  17. World Health Organization, UNICEF, Water Supply and Sanitation Collaborative Council, WHO/UNICEF Joint Water Supply and Sanitation Monitoring Programme, Global Water Supply and Sanitation Assessment 2000 Report (World Health Organization, Geneva, 2000)

    Google Scholar 

  18. Y.F. Lee, C.C. Huang, Colorimetric assay of lead ions in biological samples using a nanogold-based membrane. ACS Appl. Mater. Interfaces 3(7), 2747–2754 (2011). doi:10.1021/am200535s

    Google Scholar 

  19. T. Jasarevic, G. Thomas, N. Osseiran, 7 million premature deaths annually linked to air pollution (2014), http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/

  20. L.D. Zhang, X.S. Fang, Controlled growth and characterization methods of semiconductor nanomaterials. J. Nanosci. Nanotechnol. 8(1), 149–201 (2008). doi:10.1166/jnn.2008.N02

    Google Scholar 

  21. R. Purkhart, A. Hillmann, R. Graupner, G. Becher, Detection of characteristic clusters in IMS-Spectrograms of exhaled air polluted with environmental contaminants. Int. J. Ion Mobil. Spectrom. 15(2), 63–68 (2012). doi:10.1007/s12127-012-0090-4

    Google Scholar 

  22. A. Masiá, J. Campo, C. Blasco, Y. Picó, Ultra-high performance liquid chromatography–quadrupole time-of-flight mass spectrometry to identify contaminants in water: an insight on environmental forensics. J. Chromatogr. A 1345(0), 86–97 (2014). doi:http://dx.doi.org/10.1016/j.chroma.2014.04.017

    Google Scholar 

  23. C. Arpa Şahin, M. Efeçınar, N. Şatıroğlu, Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples. J. Hazard. Mater. 176(1–3), 672–677 (2010). doi:http://dx.doi.org/10.1016/j.jhazmat.2009.11.084

    Google Scholar 

  24. J.C. Van Loon, Analytical Atomic Absorption Spectroscopy: Selected Methods (Academic, New York, 1980)

    Google Scholar 

  25. K.C. Armstrong, C.E. Tatum, R.N. Dansby-Sparks, J.Q. Chambers, Z.-L. Xue, Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 82(2), 675–680 (2010). doi:http://dx.doi.org/10.1016/j.talanta.2010.05.031

    Google Scholar 

  26. Z. Bi, P. Salaün, C.M.G. van den Berg, Study of bare and mercury-coated vibrated carbon, gold and silver microwire electrodes for the determination of lead and cadmium in seawater by anodic stripping voltammetry. Electroanalysis 25(2), 357–366 (2013). doi:10.1002/elan.201200446

    Google Scholar 

  27. A. Cavazzini, L. Pasti, A. Massi, N. Marchetti, F. Dondi, Recent applications in chiral high performance liquid chromatography: a review. Anal. Chim. Acta 706(2), 205–222 (2011). doi:http://dx.doi.org/10.1016/j.aca.2011.08.038

    Google Scholar 

  28. T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013). doi:10.1039/C2CS35379B

    Google Scholar 

  29. A. Afzal, N. Iqbal, A. Mujahid, R. Schirhagl, Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review. Anal. Chim. Acta 787(0), 36–49 (2013). doi:http://dx.doi.org/10.1016/j.aca.2013.05.005

    Google Scholar 

  30. A.N. Uglov, A. Bessmertnykh-Lemeune, R. Guilard, A.D. Averin, I.P. Beletskaya, Optical methods for the detection of heavy metal ions. Russ. Chem. Rev. 83(3), 196 (2014)

    Google Scholar 

  31. A. Allouch, S. Le Calvé, C.A. Serra, Portable, miniature, fast and high sensitive real-time analyzers: BTEX detection. Sens. Actuators B 182(0), 446–452 (2013). doi:http://dx.doi.org/10.1016/j.snb.2013.03.010

    Google Scholar 

  32. A. Wilson, Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13(2), 2295–2348 (2013)

    Google Scholar 

  33. F. Long, A. Zhu, H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 13(10), 13928–13948 (2013)

    Google Scholar 

  34. S. Su, W. Wu, J. Gao, J. Lu, C. Fan, Nanomaterials-based sensors for applications in environmental monitoring. J. Mater. Chem. 22(35), 18101–18110 (2012). doi:10.1039/C2JM33284A

    Google Scholar 

  35. L. Zhang, M. Fang, Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2), 128–142 (2010). doi:http://dx.doi.org/10.1016/j.nantod.2010.03.002

    Google Scholar 

  36. A. Vaseashta, M. Vaclavikova, S. Vaseashta, G. Gallios, P. Roy, O. Pummakarnchana, Nanostructures in environmental pollution detection, monitoring, and remediation. Sci. Technol. Adv. Mater. 8(1–2), 47 (2007)

    Google Scholar 

  37. B.S. Kim, I.S. Kim, Recent nanofiber technologies. Polym. Rev. 51(3), 235–238 (2011). doi:10.1080/15583724.2011.599507

    Google Scholar 

  38. J. Miao, M. Miyauchi, T.J. Simmons, J.S. Dordick, R.J. Linhardt, Electrospinning of nanomaterials and applications in electronic components and devices. J. Nanosci. Nanotechnol. 10(9), 5507–5519 (2010). doi:10.1166/jnn.2010.3073

    Google Scholar 

  39. B. Ding, M. Wang, J. Yu, G. Sun, Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009). doi:10.3390/s90301609

    Google Scholar 

  40. D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16(14), 1151–1170 (2004). doi:10.1002/adma.200400719

    Google Scholar 

  41. H.R. Darrell, C. Iksoo, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3), 216 (1996)

    Google Scholar 

  42. P. Zahedi, I. Rezaeian, S.-O. Ranaei-Siadat, S.-H. Jafari, P. Supaphol, A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 21(2), 77–95 (2010). doi:10.1002/pat.1625

    Google Scholar 

  43. M. Inagaki, Y. Yang, F. Kang, Carbon nanofibers prepared via electrospinning. Adv. Mater. 24(19), 2547–2566 (2012). doi:10.1002/adma.201104940

    Google Scholar 

  44. P. Ramesh Kumar, N. Khan, S. Vivekanandhan, N. Satyanarayana, A.K. Mohanty, M. Misra, Nanofibers: effective generation by electrospinning and their applications. J. Nanosci. Nanotechnol. 12(1), 1–25 (2012). doi:10.1166/jnn.2012.5111

    Google Scholar 

  45. W.D. Luedtke, U. Landman, Y.H. Chiu, D.J. Levandier, R.A. Dressler, S. Sok, M.S. Gordon, Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments. J. Phys. Chem. A 112(40), 9628–9649 (2008). doi:10.1021/jp804585y

    Google Scholar 

  46. N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010). doi:http://dx.doi.org/10.1016/j.biotechadv.2010.01.004

    Google Scholar 

  47. B. Ding, H.Y. Kim, S.C. Lee, D.R. Lee, K.J. Choi, Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fibers and Polymers 3(2), 73–79 (2002). doi:10.1007/BF02875403

    Google Scholar 

  48. B. Kim, H. Park, S.H. Lee, W.M. Sigmund, Poly(acrylic acid) nanofibers by electrospinning. Mater. Lett. 59(7), 829–832 (2005). doi:http://dx.doi.org/10.1016/j.matlet.2004.11.032

    Google Scholar 

  49. X. Li, L. Lin, Y. Zhu, W. Liu, T. Yu, M. Ge, Preparation of ultrafine fast-dissolving cholecalciferol-loaded poly(vinyl pyrrolidone) fiber mats via electrospinning. Polym. Compos. 34(2), 282–287 (2013). doi:10.1002/pc.22402

    Google Scholar 

  50. C. Chen, L. Wang, Y. Huang, Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer 48(18), 5202–5207 (2007). doi:http://dx.doi.org/10.1016/j.polymer.2007.06.069

    Google Scholar 

  51. D. Li, Y. Xia, Fabrication of titania nanofibers by electrospinning. Nano Lett. 3(4), 555–560 (2003). doi:10.1021/nl034039o

    Google Scholar 

  52. A. Nikfarjam, S. Fardindoost, A. Iraji zad, Fabrication of Pd Doped WO3 nanofiber as hydrogen sensor. Polymers 5(1), 45–55 (2013)

    Google Scholar 

  53. M. Fan, W. Hui, Z. Li, Z. Shen, H. Li, A. Jiang, Y. Chen, R. Liu, Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr0.3, Ti0.7)O3 nanofibers. Microelectron. Eng. 98(0), 371–373 (2012). doi:http://dx.doi.org/10.1016/j.mee.2012.07.026

    Google Scholar 

  54. L. Deng, R.J. Young, I.A. Kinloch, Y. Zhu, S.J. Eichhorn, Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 58(0), 66–75 (2013). doi:http://dx.doi.org/10.1016/j.carbon.2013.02.032

    Google Scholar 

  55. H. Yan, N.K. Mahanta, B. Wang, S. Wang, A.R. Abramson, M. Cakmak, Structural evolution in graphitization of nanofibers and mats from electrospun polyimide–mesophase pitch blends. Carbon 71(0), 303–318 (2014). doi:http://dx.doi.org/10.1016/j.carbon.2014.01.057

    Google Scholar 

  56. Y. Si, T. Ren, Y. Li, B. Ding, J. Yu, Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 50(14), 5176–5185 (2012). doi:http://dx.doi.org/10.1016/j.carbon.2012.06.059

    Google Scholar 

  57. A. Khalil, R. Hashaikeh, M. Jouiad, Synthesis and morphology analysis of electrospun copper nanowires. J. Mater. Sci. 49(8), 3052–3065 (2014). doi:10.1007/s10853-013-8005-2

    Google Scholar 

  58. V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 1(2), 205–221 (2008). doi:10.1039/B809074M

    Google Scholar 

  59. D. Bin, Y. Jianyong, Electrospinning and Nanofibers (China Textile & Apparel Press, Beijing, 2011)

    Google Scholar 

  60. C. Tran, V. Kalra, Co-continuous nanoscale assembly of Nafion-polyacrylonitrile blends within nanofibers: a facile route to fabrication of porous nanofibers. Soft Matter 9(3), 846–852 (2013). doi:10.1039/C2SM25976A

    Google Scholar 

  61. Y. Yao, W. Yin, J. Cao, M. Yang, J. Li, S. Zhao, Y. Li, X. He, J. Leng, Manipulation and formation mechanism of silica one-dimensional periodic structures by roller electrospinning. Langmuir 30(9), 2335–2345 (2014). doi:10.1021/la4037277

    Google Scholar 

  62. Q. Du, D.R. Harding, H. Yang, Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning. Polymer 54(25), 6752–6759 (2013). doi:http://dx.doi.org/10.1016/j.polymer.2013.10.029

    Google Scholar 

  63. S. Li, J. Leng, Y. Fan, C. Fu, H. Shen, Y. Xue, D. Xu, Electrospinning synthesis and structural characterization of manganese oxyborate (Mn2OBO3) necklace-like nanofibers. Phys. Status Solidi A 208(1), 114–117 (2011). doi:10.1002/pssa.201026499

    Google Scholar 

  64. J. Li, K.I. Lee, X. Lu, S. Bao, T. Hua, J.H. Xin, B. Fei, In-situ growth of pine-needle-like tungsten oxide nanowire arrays on carbon nanofibers. Mater. Lett. 99(0), 131–133 (2013). doi:http://dx.doi.org/10.1016/j.matlet.2013.02.077

    Google Scholar 

  65. Z. Chang, “Firecracker-shaped” ZnO/polyimide hybrid nanofibers viaelectrospinning and hydrothermal process. Chem. Commun. 47(15), 4427–4429 (2011). doi:10.1039/C0CC05634K

    Google Scholar 

  66. H.-Y. Chen, T.-L. Zhang, J. Fan, D.-B. Kuang, C.-Y. Su, Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5(18), 9205–9211 (2013). doi:10.1021/am402853q

    Google Scholar 

  67. H. Chen, N. Wang, J. Di, Y. Zhao, Y. Song, L. Jiang, Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26(13), 11291–11296 (2010). doi:10.1021/la100611f

    Google Scholar 

  68. F. Mou, J.-G. Guan, W. Shi, Z. Sun, S. Wang, Oriented contraction: a facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures. Langmuir 26(19), 15580–15585 (2010). doi:10.1021/la102830p

    Google Scholar 

  69. J. Lin, B. Ding, J. Yang, J. Yu, G. Sun, Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 4(1), 176–182 (2012). doi:10.1039/c1nr10895f

    Google Scholar 

  70. D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933–938 (2004). doi:10.1021/nl049590f

    Google Scholar 

  71. J. Lin, B. Ding, J. Yu, Y. Hsieh, Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl. Mater. Interfaces 2(2), 521–528 (2010). doi:10.1021/am900736h

    Google Scholar 

  72. B. Ding, M. Wang, X. Wang, J. Yu, G. Sun, Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 13(11), 16–27 (2010). doi:http://dx.doi.org/10.1016/S1369-7021(10)70200-5

    Google Scholar 

  73. J. Wu, N. Wang, Y. Zhao, L. Jiang, Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 1(25), 7290–7305 (2013). doi:10.1039/C3TA10451F

    Google Scholar 

  74. D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 3(8), 1167–1171 (2003). doi:10.1021/nl0344256

    Google Scholar 

  75. S.J. Cho, B. Kim, T. An, G. Lim, Replicable multilayered nanofibrous patterns on a flexible film. Langmuir 26(18), 14395–14399 (2010). doi:10.1021/la102467u

    Google Scholar 

  76. D. Zhang, J. Chang, Patterning of electrospun fibers using electroconductive templates. Adv. Mater. 19(21), 3664–3667 (2007). doi:10.1002/adma.200700896

    Google Scholar 

  77. M. Abbasipour, R. Khajavi, Nanofiber bundles and yarns production by electrospinning: a review. Adv. Polym. Technol. 32(3), n/a–n/a (2013). doi:10.1002/adv.21363

    Google Scholar 

  78. G. Sun, D. Wei, X. Liu, Y. Chen, M. Li, D. He, J. Zhong, Novel biodegradable electrospun nanofibrous P(DLLA-CL) balloons for the treatment of vertebral compression fractures. Nanomed. Nanotechnol. Biol. Med.. 9(6), 829–838 (2013). doi:http://dx.doi.org/10.1016/j.nano.2012.12.003

    Google Scholar 

  79. A.M. Behrens, B.J. Casey, M.J. Sikorski, K.L. Wu, W. Tutak, A.D. Sandler, P. Kofinas, In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Lett. 3(3), 249–254 (2014). doi:10.1021/mz500049x

    Google Scholar 

  80. D. Ahirwal, A. Hebraud, R. Kadar, M. Wilhelm, G. Schlatter, From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams. Soft Matter 9(11), 3164–3172 (2013). doi:10.1039/C2SM27543K

    Google Scholar 

  81. J. He, Y. Zhou, K. Qi, L. Wang, P. Li, S. Cui, Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning. Fibers Polym. 14(11), 1857–1863 (2013). doi:10.1007/s12221-013-1857-x

    Google Scholar 

  82. T. Wee-Eong, I. Ryuji, R. Seeram, Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mater. 12(1), 013002 (2011)

    Google Scholar 

  83. B. Ding, X. Wang, J. Yu, M. Wang, Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors. J. Mater. Chem. 21(34), 12784–12792 (2011). doi:10.1039/c1jm11847a

    Google Scholar 

  84. K. Lin, K.-N. Chua, G.T. Christopherson, S. Lim, H.-Q. Mao, Reducing electrospun nanofiber diameter and variability using cationic amphiphiles. Polymer 48(21), 6384–6394 (2007). doi:http://dx.doi.org/10.1016/j.polymer.2007.08.056

    Google Scholar 

  85. H. Chaobo, C. Shuiliang, L. Chuilin, H.R. Darrell, Q. Haiyan, Y. Ying, H. Haoqing, Electrospun polymer nanofibres with small diameters. Nanotechnology 17(6), 1558 (2006). doi:10.1088/0957-4484/17/6/004

    Google Scholar 

  86. X. Wang, B. Ding, G. Sun, M. Wang, J. Yu, Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog. Mater. Sci. 58(8), 1173–1243 (2013). doi:http://dx.doi.org/10.1016/j.pmatsci.2013.05.001

    Google Scholar 

  87. X. Wang, J. Wang, Y. Si, B. Ding, J. Yu, G. Sun, W. Luo, G. Zheng, Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas. Nanoscale 4(23), 7585–7592 (2012). doi:10.1039/c2nr32730a

    Google Scholar 

  88. N.A.M. Barakat, M.A. Kanjwal, F.A. Sheikh, H.Y. Kim, Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: novel strategy in the electrospinning process. Polymer 50(18), 4389–4396 (2009). doi:http://dx.doi.org/10.1016/j.polymer.2009.07.005

    Google Scholar 

  89. H.R. Pant, M.P. Bajgai, K.T. Nam, K.H. Chu, S.-J. Park, H.Y. Kim, Formation of electrospun nylon-6/methoxy poly(ethylene glycol) oligomer spider-wave nanofibers. Mater. Lett. 64(19), 2087–2090 (2010). doi:http://dx.doi.org/10.1016/j.matlet.2010.06.047

    Google Scholar 

  90. H.R. Pant, M.P. Bajgai, C. Yi, R. Nirmala, K.T. Nam, W.-i. Baek, H.Y. Kim, Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 370(1–3), 87–94 (2010). doi:http://dx.doi.org/10.1016/j.colsurfa.2010.08.051

    Google Scholar 

  91. S.Y. Tsou, H.S. Lin, C. Wang, Studies on the electrospun Nylon 6 nanofibers from polyelectrolyte solutions: 1. Effects of solution concentration and temperature. Polymer 52(14), 3127–3136 (2011). doi:http://dx.doi.org/10.1016/j.polymer.2011.05.010

    Google Scholar 

  92. B. Ding, C. Li, Y. Miyauchi, O. Kuwaki, S. Shiratori, Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology 17(15), 3685–3691 (2006). doi:10.1088/0957-4484/17/15/011

    Google Scholar 

  93. C. Mit-uppatham, M. Nithitanakul, P. Supaphol, Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol. Chem. Phys. 205(17), 2327–2338 (2004). doi:10.1002/macp.200400225

    Google Scholar 

  94. R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J. Aerosol Sci. 31(1), 65–95 (2000). doi:http://dx.doi.org/10.1016/S0021-8502(99)00034-8

    Google Scholar 

  95. R.L. Grimm, J.L. Beauchamp, Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields. J. Phys. Chem. B 109(16), 8244–8250 (2005). doi:10.1021/jp0450540

    Google Scholar 

  96. J. Hu, X. Wang, B. Ding, J. Lin, J. Yu, G. Sun, One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net. Macromol. Rapid Commun. 32(21), 1729–1734 (2011). doi:10.1002/marc.201100343

    Google Scholar 

  97. X. Wang, B. Ding, J. Yu, Y. Si, S. Yang, G. Sun, Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing. Nanoscale 3(3), 911–915 (2011). doi:10.1039/c0nr00783h

    Google Scholar 

  98. S. Yang, X. Wang, B. Ding, J. Yu, J. Qian, G. Sun, Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting. Nanoscale 3(2), 564–568 (2011). doi:10.1039/c0nr00730g

    Google Scholar 

  99. X. Wang, B. Ding, J. Yu, M. Wang, Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. J. Mater. Chem. 21(40), 16231–16238 (2011). doi:10.1039/c1jm13037d

    Google Scholar 

  100. X. Wang, Y. Si, J. Wang, B. Ding, J. Yu, S.S. Al-Deyab, A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sens Actuators B Chem. 163(1), 186–193 (2012). doi:10.1016/j.snb.2012.01.033

    Google Scholar 

  101. N. Wang, X. Wang, B. Ding, J. Yu, G. Sun, Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. J. Mater. Chem. 22(4), 1445–1452 (2012). doi:10.1039/c1jm14299b

    Google Scholar 

  102. X. Wang, B. Ding, J. Yu, M. Wang, F. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 21(5), 055502 (2010). doi:10.1088/0957-4484/21/5/055502

    Google Scholar 

  103. N. Wang, X. Wang, Y. Jia, X. Li, J. Yu, B. Ding, Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydr. Polym. 108(0), 192–199 (2014). doi:http://dx.doi.org/10.1016/j.carbpol.2014.02.088

    Google Scholar 

  104. X. Wang, B. Ding, J. Yu, J. Yang, Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting. Colloids Surf. B Biointerfaces 86(2), 345–352 (2011). doi:http://dx.doi.org/10.1016/j.colsurfb.2011.04.018

    Google Scholar 

  105. D.C. Parajuli, M.P. Bajgai, J.A. Ko, H.K. Kang, M.S. Khil, H.Y. Kim, Synchronized polymerization and fabrication of poly(acrylic acid) and nylon hybrid mats in electrospinning. ACS Appl. Mater. Interfaces 1(4), 750–757 (2009). doi:10.1021/am800191m

    Google Scholar 

  106. R. Nirmala, R. Navamathavan, M.H. El-Newehy, H.Y. Kim, Preparation and electrical characterization of polyamide-6/chitosan composite nanofibers via electrospinning. Mater. Lett. 65(3), 493–496 (2011). doi:http://dx.doi.org/10.1016/j.matlet.2010.10.066

    Google Scholar 

  107. R. Nirmala, R. Navamathavan, H.-S. Kang, M.H. El-Newehy, H.Y. Kim, Preparation of polyamide-6/chitosan composite nanofibers by a single solvent system via electrospinning for biomedical applications. Colloids Surf. B Biointerfaces 83(1), 173–178 (2011). doi:http://dx.doi.org/10.1016/j.colsurfb.2010.11.026

    Google Scholar 

  108. B. Ding, Y. Si, X. Wang, J. Yu, L. Feng, G. Sun, Label-free ultrasensitive colorimetric detection of copper(II) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips. J. Mater. Chem. 21(35), 13345–13353 (2011). doi:10.1039/c1jm11851j

    Google Scholar 

  109. Y. Si, X. Wang, Y. Li, K. Chen, J. Wang, J. Yu, H. Wang, B. Ding, Optimized colorimetric sensor strip for mercury(ii) assay using hierarchical nanostructured conjugated polymers. J. Mater. Chem. A 2(3), 645–652 (2014). doi:10.1039/c3ta13867d

    Google Scholar 

  110. Y. Li, Y. Si, X. Wang, B. Ding, G. Sun, G. Zheng, W. Luo, J. Yu, Colorimetric sensor strips for lead (II) assay utilizing nanogold probes immobilized polyamide-6/nitrocellulose nano-fibers/nets. Biosens. Bioelectron. 48(0), 244–250 (2013). doi:http://dx.doi.org/10.1016/j.bios.2013.03.085

    Google Scholar 

  111. C.K. O’Sullivan, G.G. Guilbault, Commercial quartz crystal microbalances – theory and applications. Biosens. Bioelectron. 14(8–9), 663–670 (1999). doi:http://dx.doi.org/10.1016/S0956-5663(99)00040-8

    Google Scholar 

  112. B. Ding, J.H. Kim, Y. Miyazaki, S.M. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens Actuators B Chem. 101(3), 373–380 (2004). doi:10.1016/j.snb.2004.04.008

    Google Scholar 

  113. B. Ding, M. Yamazaki, S. Shiratori, Electrospun fibrous polyacrylic acid membrane-based gas sensors. Sens Actuators B Chem. 106(1), 477–483 (2005). doi:10.1016/j.snb.2004.09.010

    Google Scholar 

  114. S. Casilli, C. Malitesta, S. Conoci, S. Petralia, S. Sortino, L. Valli, Piezoelectric sensor functionalised by a self-assembled bipyridinium derivative: characterisation and preliminary applications in the detection of heavy metal ions. Biosens. Bioelectron. 20(6), 1190–1195 (2004). doi:http://dx.doi.org/10.1016/j.bios.2004.04.028

    Google Scholar 

  115. A.J. Ricco, R.M. Crooks, G.C. Osbourn, Surface acoustic wave chemical sensor arrays: new chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures. Acc. Chem. Res. 31(5), 289–296 (1998). doi:10.1021/ar9600749

    Google Scholar 

  116. A. Palaniappan, X. Li, F.E.H. Tay, J. Li, X. Su, Cyclodextrin functionalized mesoporous silica films on quartz crystal microbalance for enhanced gas sensing. Sens. Actuators B 119(1), 220–226 (2006). doi:http://dx.doi.org/10.1016/j.snb.2005.12.015

    Google Scholar 

  117. C. Zhang, X. Wang, J. Lin, B. Ding, J. Yu, N. Pan, Nanoporous polystyrene fibers functionalized by polyethyleneimine for enhanced formaldehyde sensing. Sens. Actuators B 152(2), 316–323 (2011). doi:http://dx.doi.org/10.1016/j.snb.2010.12.028

    Google Scholar 

  118. Y.I. Korpan, M.V. Gonchar, A.A. Sibirny, C. Martelet, A.V. El’skaya, T.D. Gibson, A.P. Soldatkin, Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens. Bioelectron. 15(1–2), 77–83 (2000). doi:http://dx.doi.org/10.1016/S0956-5663(00)00054-3

    Google Scholar 

  119. R. Kataky, M.R. Bryce, L. Goldenberg, S. Hayes, A. Nowak, A biosensor for monitoring formaldehyde using a new lipophilic tetrathiafulvalene-tetracyanoquinodimethane salt and a polyurethane membrane. Talanta 56(3), 451–458 (2002). doi:http://dx.doi.org/10.1016/S0039-9140(01)00567-7

    Google Scholar 

  120. X. Wang, F. Cui, J. Lin, B. Ding, J. Yu, S.S. Al-Deyab, Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens. Actuators B 171–172, 658–665 (2012). doi:10.1016/j.snb.2012.05.050

    Google Scholar 

  121. P.-R. Chung, C.-T. Tzeng, M.-T. Ke, C.-Y. Lee, Formaldehyde gas sensors: a review. Sensors 13(4), 4468–4484 (2013). doi:10.3390/s130404468

    Google Scholar 

  122. S. Srisuda, B. Virote, Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials. J. Environ. Sci. 20(3), 379–384 (2008). doi:http://dx.doi.org/10.1016/S1001-0742(08)60059-5

    Google Scholar 

  123. V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, A. Kolmakov, A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 7(10), 3182–3188 (2007)

    Google Scholar 

  124. J. Huang, Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12), 9903–9924 (2009). doi:10.3390/s91209903

    Google Scholar 

  125. S. Bag, I.U. Arachchige, M.G. Kanatzidis, Aerogels from metal chalcogenides and their emerging unique properties. J. Mater. Chem. 18(31), 3628–3632 (2008). doi:10.1039/B804011G

    Google Scholar 

  126. R. Liang, H. Cao, D. Qian, MoO3 nanowires as electrochemical pseudocapacitor materials. Chem. Commun. 47(37), 10305–10307 (2011). doi:10.1039/C1CC14030B

    Google Scholar 

  127. M. Kimura, R. Sakai, S. Sato, T. Fukawa, T. Ikehara, R. Maeda, T. Mihara, Sensing of vaporous organic compounds by TiO2 porous films covered with polythiophene layers. Adv. Funct. Mater. 22(3), 469–476 (2012). doi:10.1002/adfm.201101953

    Google Scholar 

  128. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46(8), 1318–1320 (2007). doi:10.1002/anie.200603817

    Google Scholar 

  129. A.W. Martinez, S.T. Phillips, G.M. Whitesides, E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2009). doi:10.1021/ac9013989

    Google Scholar 

  130. W. Zhao, M.M. Ali, S.D. Aguirre, M.A. Brook, Y. Li, Paper-based bioassays using gold nanoparticle colorimetric probes. Anal. Chem. 80(22), 8431–8437 (2008). doi:10.1021/ac801008q

    Google Scholar 

  131. R. Pelton, Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends Anal. Chem. 28(8), 925–942 (2009). doi:http://dx.doi.org/10.1016/j.trac.2009.05.005

    Google Scholar 

  132. X. Wang, Y. Si, X. Mao, Y. Li, J. Yu, H. Wang, B. Ding, Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. Analyst 138(17), 5129–5136 (2013). doi:10.1039/c3an00812f

    Google Scholar 

  133. S. Mukherjee, J.W. Yang, S. Hoffmann, B. List, Asymmetric enamine catalysis. Chem. Rev. 107(12), 5471–5569 (2007). doi:10.1021/cr0684016

    Google Scholar 

  134. B.C. Ye, B.C. Yin, Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew. Chem. Int. Ed. 47(44), 8386–8389 (2008). doi:10.1002/anie.200803069

    Google Scholar 

  135. M. Zhang, L. Ge, S. Ge, M. Yan, J. Yu, J. Huang, S. Liu, Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens. Bioelectron. 41(0), 544–550 (2013). doi:http://dx.doi.org/10.1016/j.bios.2012.09.022

    Google Scholar 

  136. C.X. Tang, Y. Zhao, X.W. He, X.B. Yin, A “turn-on” electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)32+ into ds-DNA. Chem. Commun. 46(47), 9022–9024 (2010). doi:10.1039/C0CC03495A

    Google Scholar 

  137. J. Liu, Y. Lu, Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew. Chem. Int. Ed. 46(40), 7587–7590 (2007). doi:10.1002/anie.200702006

    Google Scholar 

  138. H.S. Kolla, S.P. Surwade, X. Zhang, A.G. MacDiarmid, S.K. Manohar, Absolute molecular weight of polyaniline. J. Am. Chem. Soc. 127(48), 16770–16771 (2005). doi:10.1021/ja055327k

    Google Scholar 

  139. C. Alemán, C.A. Ferreira, J. Torras, A. Meneguzzi, M. Canales, M.A.S. Rodrigues, J. Casanovas, On the molecular properties of polyaniline: a comprehensive theoretical study. Polymer 49(23), 5169–5176 (2008). doi:http://dx.doi.org/10.1016/j.polymer.2008.09.023

    Google Scholar 

  140. A. Varela-Álvarez, J.A. Sordo, G.E. Scuseria, Doping of polyaniline by acid − base chemistry: density functional calculations with periodic boundary conditions. J. Am. Chem. Soc. 127(32), 11318–11327 (2005). doi:10.1021/ja051012t

    Google Scholar 

  141. D.P. Pompeani, M.B. Abbott, B.A. Steinman, D.J. Bain, Lake sediments record prehistoric lead pollution related to early copper production in North America. Environ. Sci. Technol. 47(11), 5545–5552 (2013). doi:10.1021/es304499c

    Google Scholar 

  142. H. Cheng, Y. Hu, Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ. Pollut. 158(5), 1134–1146 (2010). doi:http://dx.doi.org/10.1016/j.envpol.2009.12.028

    Google Scholar 

  143. G. Li, L. Zhang, Z. Li, W. Zhang, PAR immobilized colorimetric fiber for heavy metal ion detection and adsorption. J. Hazard. Mater. 177(1–3), 983–989 (2010). doi:http://dx.doi.org/10.1016/j.jhazmat.2010.01.015

    Google Scholar 

  144. L. Fewtrell, World Health Organization, R. Kaufmann, A. Prüss-Üstün, World Health Organization Protection of the Human Environment, Lead: Assessing the Environmental Burden of Disease at National and Local Levels (World Health Organization, Protection of the Human Environment, 2003), http://www.who.int/quantifying_ehimpacts/publications/en/leadebd2.pdf

  145. M.G. Aylmore, Treatment of a refractory gold-copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Miner. Eng. 14(6), 615–637 (2001). doi:http://dx.doi.org/10.1016/S0892-6875(01)00057-7

    Google Scholar 

  146. G.H. Liu, J.Y. Yang, Content-based image retrieval using color difference histogram. Pattern Recogn. 46(1), 188–198 (2013). doi:http://dx.doi.org/10.1016/j.patcog.2012.06.001

    Google Scholar 

  147. M.M. Hawkeye, M.J. Brett, Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition. Adv. Funct. Mater. 21(19), 3652–3658 (2011). doi:10.1002/adfm.201100893

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Basic Research Program of China (973 Program, 2012CB525005), the National Natural Science Foundation of China (No. 51173022, 51273038 and 51322304), the Huo Yingdong Foundation (131070), the Program for New Century Talents of the University in China, the Fundamental Research Funds for the Central Universities, and the “DHU Distinguished Young Professor Program”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Yu, J., Ding, B. (2015). Facile and Ultrasensitive Sensors Based on Electrospinning-Netting Nanofibers/Nets. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_1

Download citation

Publish with us

Policies and ethics