Skip to main content

Study of Lagrangian and Evolutionary Parameters in Krill Herd Algorithm

  • Chapter

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 18))

Abstract

Krill Herd (KH) is a novel swarm-based intelligent optimization method developed through the idealization of the krill swarm. In the basic KH method, all the movement parameters used are originated from real nature-driven data found in the literature. The parameter setting based on such data is not necessarily the best selection. In this work, a systematic method is presented for the selection of the best parameter setting for the KH algorithm through an extensive study of arrays of high-dimensional benchmark problems. An important finding is that the best performance of KH can be obtained by setting effective coefficient of the krill individual (C best ), food coefficient(C food ), maximum diffusion speed (D max ), crossover probability (C r ) and mutation probability (M u ) parameters to 4.00, 4.25, 0.014, 0.225, and 0.025, respectively. This finding would eliminate the concerns regarding the optimal tuning of the KH algorithm for its most future applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997), doi:10.1023/A:1008202821328

    Article  MATH  MathSciNet  Google Scholar 

  2. Gandomi, A.H., Yang, X.-S., Talatahari, S., Deb, S.: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput. Math. Appl. 63(1), 191–200 (2012), doi:10.1016/j.camwa.2011.11.010

    Article  MATH  MathSciNet  Google Scholar 

  3. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007), doi:10.1007/s10898-007-9149-x

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, X., Yin, M.: Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput. Appl. 24(3-4), 723–734 (2012), doi:10.1007/s00521-012-1285-7

    Article  Google Scholar 

  5. Fister, I., Fister Jr., I., Zumer, J.B.: Memetic artificial bee colony algorithm for large-scale global optimization. In: IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, June 10-15, pp. 1–8. IEEE (2012), doi:10.1109/CEC.2012.6252938

    Google Scholar 

  6. Gandomi, A.H., Alavi, A.H.: Multi-stage genetic programming: A new strategy to nonlinear system modeling. Inf. Sci. 181(23), 5227–5239 (2011), doi:10.1016/j.ins.2011.07.026

    Article  Google Scholar 

  7. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013), doi:10.1007/s00366-011-0241-y

    Article  MathSciNet  Google Scholar 

  8. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceeding of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, pp. 210–214. IEEE Publications, USA (2009)

    Chapter  Google Scholar 

  9. Gandomi, A.H., Talatahari, S., Yang, X.-S., Deb, S.: Design optimization of truss structures using cuckoo search algorithm. Struct. Des. Tall Spec. 22(17), 1330–1349 (2013), doi:10.1002/tal.1033

    Article  Google Scholar 

  10. Li, X., Wang, J., Yin, M.: Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput. Appl. 24(6), 1233–1247 (2013), doi:10.1007/s00521-013-1354-6

    Article  MathSciNet  Google Scholar 

  11. Fister Jr, I., Yang, X.-S., Fister, D., Fister, I.: Cuckoo Search: A Brief Literature Review. In: Yang, X.-S. (ed.) Cuckoo Search and Firefly Algorithm. SCI, vol. 516, pp. 49–62. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Fister Jr, I., Fister, D., Fister, I.: A comprehensive review of cuckoo search: variants and hybrids. Int. J. Math. Model. Numer. Optim. 4(4), 387–409 (2013)

    MATH  Google Scholar 

  13. Simon, D.: Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12(6), 702–713 (2008), doi:10.1109/TEVC.2008.919004

    Article  Google Scholar 

  14. Li, X., Wang, J., Zhou, J., Yin, M.: A perturb biogeography based optimization with mutation for global numerical optimization. Appl. Math. Comput. 218(2), 598–609 (2011), doi:10.1016/j.amc.2011.05.110

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, X., Yin, M.: Multi-operator based biogeography based optimization with mutation for global numerical optimization. Comput. Math. Appl. 64(9), 2833–2844 (2012), doi:10.1016/j.camwa.2012.04.015

    Article  MATH  MathSciNet  Google Scholar 

  16. Saremi, S., Mirjalili, S., Lewis, A.: Biogeography-based optimisation with chaos. Neural Comput. Appl. (2014), doi:10.1007/s00521-014-1597-x

    Google Scholar 

  17. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. (2013), doi:10.1007/s00521-013-1433-8

    Google Scholar 

  18. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014), doi:10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  19. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001), doi:10.1177/003754970107600201

    Article  Google Scholar 

  20. Wang, G., Guo, L., Duan, H., Wang, H., Liu, L., Shao, M.: Hybridizing harmony search with biogeography based optimization for global numerical optimization. J. Comput. Theor. Nanos. 10(10), 2318–2328 (2013), doi:10.1166/jctn.2013.3207

    Google Scholar 

  21. Kennedy, J., Eberhart, R.: Particle swarm optimization. Paper presented at the Proceeding of the IEEE International Conference on Neural Networks, Perth, Australia, November 27-December 1 (1995)

    Google Scholar 

  22. Talatahari, S., Kheirollahi, M., Farahmandpour, C., Gandomi, A.H.: A multi-stage particle swarm for optimum design of truss structures. Neural Comput. Appl. 23(5), 1297–1309 (2013), doi:10.1007/s00521-012-1072-5

    Article  Google Scholar 

  23. Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013), doi:10.1016/j.swevo.2012.09.002

    Article  Google Scholar 

  24. Mirjalili, S., Wang, G.-G., Coelho, L.S.: Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput. Appl. (2014), doi:10.1007/s00521-014-1629-6

    Google Scholar 

  25. Gandomi, A.H.: Interior Search Algorithm (ISA): A Novel Approach for Global Optimization. ISA Trans. (2014), doi:10.1016/j.isatra.2014.03.018

    Google Scholar 

  26. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int J of Bio-Inspired Computation 2(2), 78–84 (2010)

    Article  Google Scholar 

  27. Fister, I., Fister Jr., I., Yang, X.-S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13, 34–46 (2013), doi:10.1016/j.swevo.2013.06.001

    Article  Google Scholar 

  28. Wang, G.-G., Guo, L., Duan, H., Wang, H.: A new improved firefly algorithm for global numerical optimization. J. Comput. Theor. Nanos. 11(2), 477–485 (2014), doi:10.1166/jctn.2014.3383

    Article  Google Scholar 

  29. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3-4), 267–289 (2010), doi:10.1007/s00707-009-0270-4

    Article  MATH  Google Scholar 

  30. Gandomi, A.H., Yang, X.-S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013), doi:10.1007/s00521-012-1028-9

    Article  Google Scholar 

  31. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Computation 29(5), 464–483 (2012), doi:10.1108/02644401211235834

    Article  Google Scholar 

  32. Fister Jr., I., Fong, S., Brest, J., Fister, I.: A Novel Hybrid Self-Adaptive Bat Algorithm. Sci. World J. 2014, 1–12 (2014), doi:10.1155/2014/709738

    Google Scholar 

  33. Mirjalili, S., Mirjalili, S.M., Yang, X.-S.: Binary bat algorithm. Neural Comput. Appl. (2013), doi:10.1007/s00521-013-1525-5

    Google Scholar 

  34. Zhang, Y., Huang, D., Ji, M., Xie, F.: Image segmentation using PSO and PCM with Mahalanobis distance. Expert Syst. Appl. 38(7), 9036–9040 (2011), doi:10.1016/j.eswa.2011.01.041

    Article  Google Scholar 

  35. Chen, C.-H., Yang, S.-Y.: Neural fuzzy inference systems with knowledge-based cultural differential evolution for nonlinear system control. Inf. Sci. (2014), doi:10.1016/j.ins.2014.02.071

    Google Scholar 

  36. Mukherjee, R., Patra, G.R., Kundu, R., Das, S.: Cluster-based differential evolution with Crowding Archive for niching in dynamic environments. Inf. Sci. (2014), doi:10.1016/j.ins.2013.11.025

    Google Scholar 

  37. Li, X., Yin, M.: Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans. Nanobiosci. 12(4), 343–353 (2013), doi:10.1109/TNB.2013.2294716

    Article  Google Scholar 

  38. Fister, I., Mernik, M., Filipič, B.: A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl. Soft Compt. 10(2), 409–422 (2010), doi:10.1016/j.asoc.2009.08.001

    Article  Google Scholar 

  39. Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dynam. (2014), doi:10.1007/s11071-014-1273-9

    Google Scholar 

  40. Li, X., Yin, M.: Application of Differential Evolution Algorithm on Self-Potential Data. PLoS ONE 7(12), e51199 (2012), doi:10.1371/journal.pone.0051199

    Article  Google Scholar 

  41. Mirjalili, S., Mohd Hashim, S.Z., Moradian Sardroudi, H.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012), doi:10.1016/j.amc.2012.04.069

    Article  MATH  MathSciNet  Google Scholar 

  42. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Let a biogeography-based optimizer train your Multi-Layer Perceptron. Inf. Sci. 269, 188–209 (2014), doi:10.1016/j.ins.2014.01.038

    Article  MathSciNet  Google Scholar 

  43. Li, X., Yin, M.: An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure. Adv. Eng. Softw. 55, 10–31 (2013), doi:10.1016/j.advengsoft.2012.09.003

    Article  Google Scholar 

  44. Yang, X.S., Gandomi, A.H., Talatahari, S., Alavi, A.H.: Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier, Waltham (2013)

    Google Scholar 

  45. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Metaheuristic Applications in Structures and Infrastructures. Elsevier, Waltham (2013)

    Google Scholar 

  46. Gandomi, A.H., Alavi, A.H.: Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simulat. 17(12), 4831–4845 (2012), doi:10.1016/j.cnsns.2012.05.010

    Article  MATH  MathSciNet  Google Scholar 

  47. Wang, G.-G., Guo, L., Gandomi, A.H., Hao, G.-S., Wang, H.: Chaotic krill herd algorithm. Inf. Sci. 274, 17–34 (2014), doi:10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  48. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42(6), 962–978 (2013), doi:10.1108/K-11-2012-0108

    Article  MathSciNet  Google Scholar 

  49. Saremi, S., Mirjalili, S.M., Mirjalili, S.: Chaotic Krill Herd Optimization Algorithm. Procedia Technology 12, 180–185 (2014), doi:10.1016/j.protcy.2013.12.473

    Article  Google Scholar 

  50. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: Stud krill herd algorithm. Neurocomputing 128, 363–370 (2014), doi:10.1016/j.neucom.2013.08.031

    Article  Google Scholar 

  51. Wang, G., Guo, L., Gandomi, A.H., Cao, L., Alavi, A.H., Duan, H., Li, J.: Lévy-flight krill herd algorithm. Math. Probl. Eng. 2013, 1–14 (2013), doi:10.1155/2013/682073

    Google Scholar 

  52. Guo, L., Wang, G.-G., Gandomi, A.H., Alavi, A.H., Duan, H.: A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138, 392–402 (2014), doi:10.1016/j.neucom.2014.01.023

    Article  Google Scholar 

  53. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl. Math. Model. 38(9-10), 2454–2462 (2014), doi:10.1016/j.apm.2013.10.052

    Article  MathSciNet  Google Scholar 

  54. Wang, G., Guo, L., Wang, H., Duan, H., Liu, L., Li, J.: Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput. Appl. 24(3-4), 853–871 (2014), doi:10.1007/s00521-012-1304-8

    Article  Google Scholar 

  55. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Hao, G.-S.: Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput. Appl. 25(2), 297–308 (2014), doi:10.1007/s00521-013-1485-9

    Article  Google Scholar 

  56. Li, J., Tang, Y., Hua, C., Guan, X.: An improved krill herd algorithm: Krill herd with linear decreasing step. Appl. Math. Comput. 234, 356–367 (2014), doi:10.1016/j.amc.2014.01.146

    Article  MATH  MathSciNet  Google Scholar 

  57. Wang, G.-G., Guo, L., Gandomi, A.H., Alavi, A.H., Duan, H.: Simulated annealing-based krill herd algorithm for global optimization. Abstr. Appl. Anal. 2013, 1–11 (2013), doi:10.1155/2013/213853

    Google Scholar 

  58. Wang, G.-G., Gandomi, A.H., Yang, X.-S., Alavi, A.H.: A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int. J. of Bio-Inspired Computation (2013)

    Google Scholar 

  59. Gandomi, A.H., Talatahari, S., Tadbiri, F., Alavi, A.H.: Krill herd algorithm for optimum design of truss structures. Int. J. of Bio-Inspired Computation 5(5), 281–288 (2013), doi:10.1504/IJBIC.2013.057191

    Article  Google Scholar 

  60. Gandomi, A.H., Alavi, A.H.: An introduction of krill herd algorithm for engineering optimization. J. Civil Eng. Manag. (2013)

    Google Scholar 

  61. Gandomi, A.H., Alavi, A.H., Talatahari, S.: Structural Optimization using Krill Herd Algorithm. In: Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, pp. 335–349. Elsevier (2013)

    Google Scholar 

  62. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evolut. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  63. Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M.: Swarm Intelligence and Bio-Inspired Computation. Elsevier, Waltham (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, GG., Gandomi, A.H., Alavi, A.H. (2015). Study of Lagrangian and Evolutionary Parameters in Krill Herd Algorithm. In: Fister, I., Fister Jr., I. (eds) Adaptation and Hybridization in Computational Intelligence. Adaptation, Learning, and Optimization, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-14400-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14400-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14399-6

  • Online ISBN: 978-3-319-14400-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics