Skip to main content

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 18))

Abstract

The aim of this chapter is to familiarize readers with the basics of adaptation and hybridization in nature-inspired algorithms as necessary for understanding the main contents of this book. Adaptation is a metaphor for flexible autonomous systems that respond to external changing factors (mostly environmental) by adapting their well-established behavior. Adaptation emerges in practically all areas of human activities as well. Such adaptation mechanisms can be used as a general problem-solving approach, though it may suffer from a lack of problem-specific knowledge. To solve specific problems with additional improvements of possible performance, hybridization can be used in order to incorporate a problem-specific knowledge from a problem domain. In order to discuss relevant issues as general as possible, the classification of problems is identified at first. Additionally, we focus on the biological foundations of adaptation that constitute the basis for the formulation of nature-inspired algorithms. This book highlights three types of inspirations from nature: the human brain, Darwinian natural selection, and the behavior of social living insects (e.g., ants, bees, etc.) and animals (e.g., swarm of birds, shoals of fish, etc.), which influence the development of artificial neural networks. evolutionary algorithms, and swarm intelligence, respectively. The mentioned algorithms that can be placed under the umbrella of computational intelligence are described from the viewpoint of adaptation and hybridization so as to show that these mechanisms are simple to develop and yet very efficient. Finally, a brief review of recent developed applications is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beni, G., Wang, J.: Swarm Intelligence in Cellular Robotic Systems. In: Proceedings of NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, pp. 26–30 (1989)

    Google Scholar 

  2. Turing, A.M.: Computing machinery and intelligence. Mind, 433–460 (1950)

    Google Scholar 

  3. Grant, P.R., Grant, B.R.: Adaptive Radiation of Darwin’s Finches. American Scientist 90(2), 130–150 (2002)

    Google Scholar 

  4. Wright, S.A.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the VI International Congress of Genetrics, vol. (1), pp. 356–366 (1932)

    Google Scholar 

  5. Dasgupta, D.: Information Processing in the Immune System. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 161–167. McGraw Hill, New York (1999)

    Google Scholar 

  6. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw Hill, London (1999)

    Google Scholar 

  7. Karaboga, D., Bastruk, B.: A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. Journal of Global Optimization 39(3), 459–471 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Kennedy, J., Eberhart, R.: The Particle Swarm Optimization; Social Adaptation in Information Processing. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 379–387. McGraw Hill, London (1999)

    Google Scholar 

  9. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Google Scholar 

  10. Yang, X.-S.: Firefly Algorithm. In: Yang, X.-S. (ed.) Nature-Inspired Metaheuristic Algorithms, pp. 79–90. Luniver Press, London (2008)

    Google Scholar 

  11. Yang, X.-S.: Flower Pollination Algorithm for Global Optimization. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 240–249. Springer, Heidelberg (2012)

    Google Scholar 

  12. Yang, X.-S., Deb, S.: Cuckoo Search via Levy Flights. In: World Congress & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publication (2009)

    Google Scholar 

  13. Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  15. Ulam, S.: Tribute to John von Neumann. Bulletin of the American Mathematical Society 64(3), 50–56 (1958)

    MathSciNet  Google Scholar 

  16. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 5(4), 115–133 (1943)

    MATH  MathSciNet  Google Scholar 

  17. Eiben, A.E., Smith, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)

    Google Scholar 

  18. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Google Scholar 

  19. Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw Hill, London (1999)

    Google Scholar 

  20. Wilfried, J.: A general cost-benefit-based adaptation framework for multimeme algorithms. Memetic Computing 2, 201–218 (2010)

    Google Scholar 

  21. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys 45(3), 1–33 (2013)

    Google Scholar 

  22. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation 1(2), 1–14 (2011)

    Google Scholar 

  23. Neri, F.: Diversity Management in Memetic Algorithms. In: Neri, F., Cotta, C., Moscato, P. (eds.) Handbook of Memetic Algorithms, pp. 153–164. Springer, Berlin (2012)

    Google Scholar 

  24. Chen, X., Ong, Y.-S., Lim, M.-H., Tan, K.C.: A Multi-Facet Survey on Memetic Computation. Trans. Evol. Comp. 15(5), 591–607 (2011)

    Google Scholar 

  25. Ong, Y.-S., Lim, M.-H., Zhu, N., Wong, K.-W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(1), 141–152 (2006)

    Google Scholar 

  26. Garcia, S., Cano, J.R., Herrera, F.: A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recogn. 41(8), 2693–2709 (2008)

    MATH  Google Scholar 

  27. Iacca, G., Neri, F., Mininno, E., Ong, Y.-S., Lim, M.-H.: Ockham’s Razor in memetic computing: Three stage optimal memetic exploration. Inf. Sci. 188(4), 17–43 (2012)

    MathSciNet  Google Scholar 

  28. Ong, Y.-S., Lim, M.H., Chen, X.: Research frontier: memetic computation-past, present & future. Comp. Intell. Mag. 5 2(5), 24–31 (2010)

    Google Scholar 

  29. Lynch, A.: Thought as abstract evolution. J. Ideas 2(1), 3–10 (1991)

    Google Scholar 

  30. Fister Jr., I., Yang, X.-S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired algorithms for optimization. Electrotehnical Review 80(3), 116–122 (2013)

    Google Scholar 

  31. Fister, I., Fong, S., Brest, J., Fister Jr., I.: A novel hybrid self-adaptive bat algorithm. The Scientific World Journal, 1–12 (2014)

    Google Scholar 

  32. Fister, I., Mernik, M., Filipič, B.: Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm. Comp. Opt. and Appl. 54(3), 741–770 (2013)

    MATH  Google Scholar 

  33. Fister, I., Mernik, M., Filipič, B.: A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl. Soft Comput. 10(2), 409–422 (2010)

    Google Scholar 

  34. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics 16, 122–128 (1986)

    Google Scholar 

  35. Kotler, P., Armstrong, G., Brown, L., Adam, S.: Marketing, 7th edn. Pearson Education Australia/Prentice Hall, Sydney (2006)

    Google Scholar 

  36. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    MATH  Google Scholar 

  37. Darwin, C.: On the Origin of Species. Harvard University Press, London (1859)

    Google Scholar 

  38. Blum, C., Merkle, D.: Swarm Intelligence. Springer, Berlin (2008)

    MATH  Google Scholar 

  39. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, New Jersey (2009)

    Google Scholar 

  40. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  41. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. A Bradford Book, Cambridge (1992)

    Google Scholar 

  42. Maschler, M., Solan, A., Zamir, S.: Game Theory. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  43. Lehn, J.M.: Supramolecular Chemistry: Concepts and Perspectives. VCH Verlagsgeselschaft, Weinheim (1995)

    Google Scholar 

  44. Applegate, D.L., Bixby, R.E., Chvǎtal, V., Cook, W.: The Traveling Salesman Problem. University Press, Princeton (2006)

    MATH  Google Scholar 

  45. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)

    MATH  Google Scholar 

  46. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  47. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  48. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence through Simulated Evolution. John Willey & Sons, Inc., New York (1966)

    MATH  Google Scholar 

  49. Koza, J.: Genetic Programming 2 - Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

    Google Scholar 

  50. Searle, J.R.: The rediscovery of the mind. MIT Press, Cambridge (1992)

    Google Scholar 

  51. Rechenberg, I.: Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  52. Schwefel, H.P.: Numerische Optimierung von Computer–Modellen mittels der Evolutionsstrategie. Birkhäuser, Basel (1977)

    MATH  Google Scholar 

  53. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001)

    MATH  Google Scholar 

  54. Michalewicz, Z., Fogel, D.: How to solwe it: Modern heuristics. Springer (2004)

    Google Scholar 

  55. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer, Berlin (1992)

    MATH  Google Scholar 

  56. Moscato, P.: On evolution, search, optimization, genetic algorithm and martial arts: Toward memetic algorithms. Tech. Rep. 826. California Institute of Technology, Pasadena, CA (1989)

    Google Scholar 

  57. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)

    Google Scholar 

  58. Dawkins, R.: The selfish gene. Oxford University Press, Oxford (1976)

    Google Scholar 

  59. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Oxford University Press, Princeton (1997)

    MATH  Google Scholar 

  60. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, Oxford (2005)

    Google Scholar 

  61. Blackmore, S.: The Meme Machine. Oxford University Press, New York (1999)

    Google Scholar 

  62. Law, A.: Simulation Modeling and Analysis with Expertfit Software. McGraw-Hill, New York (2006)

    Google Scholar 

  63. Fister, I., Fister Jr, I., Brest, J., Yang, X.-S.: Memetic firefly algorithm for combinatorial optimization. In: Filipič, B., Šilc, J. (eds.) Bioinspired Optimization Methods and Their Applications: Proceedings of the Fifth International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012, pp. 75–86. Jožef Stefan Institute, Ljubljana (2012)

    Google Scholar 

  64. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Google Scholar 

  65. Cai, Z., Peng, Z.: Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems. Journal of Intelligent and Robotic Systems 33(1), 61–71 (2002)

    MATH  Google Scholar 

  66. Chandrasekaran, K., Simon, S.P.: Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm and Evolutionary Computation 5, 1–16 (2012)

    Google Scholar 

  67. Chitty, D.M., Hernandez, M.L.: A hybrid ant colony optimisation technique for dynamic vehicle routing. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 48–59. Springer, Heidelberg (2004)

    Google Scholar 

  68. Deb, K., Beyer, H.-G.: Self-adaptive genetic algorithms with simulated binary crossover. Evolutionary Computation 9(2), 197–221 (2001)

    Google Scholar 

  69. Dilettoso, E., Salerno, N.: A self-adaptive niching genetic algorithm for multimodal optimization of electromagnetic devices. IEEE Transactions on Magnetics 42(4), 1203–1206 (2006)

    Google Scholar 

  70. Duan, H., Yu, X.: Hybrid ant colony optimization using memetic algorithm for traveling salesman problem. In: IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, ADPRL 2007, pp. 92–95. IEEE (2007)

    Google Scholar 

  71. Duan, H.-B., Xu, C.-F., Xing, Z.-H.: A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems. International Journal of Neural Systems 20(01), 39–50 (2010)

    Google Scholar 

  72. Fister, I., Fister Jr., I., Žumer, V., Brest, J.: Memetic artificial bee colony algorithm for large-scale global optimization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

    Google Scholar 

  73. Fister Jr, I., Fong, S., Brest, J., Fister, I: Towards the self-adaptation in the bat algorithm. In: Proceedings of the 13th IASTED International Conference on Artificial Intelligence and Applications (2014)

    Google Scholar 

  74. Fister, I., Fister Jr., I., Yang, X.-S., Brest, J.: A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation (2013)

    Google Scholar 

  75. Fister, I., Yang, X.-S., Fister, D., Fister Jr., I.: Firefly algorithm: A brief review of the expanding literature. In: Cuckoo Search and Firefly Algorithm, pp. 347–360. Springer (2014)

    Google Scholar 

  76. Fister Jr., I., Fister, D., Yang, X.-S.: A hybrid bat algorithm. arXiv preprint arXiv:1303.6310 (2013)

    Google Scholar 

  77. Fister Jr., I., Fister, I., Brest, J.: A hybrid artificial bee colony algorithm for graph 3-coloring. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 66–74. Springer, Heidelberg (2012)

    Google Scholar 

  78. Fister Jr, I., Yang, X.-S., Fister, I., Brest, J.: Memetic firefly algorithm for combinatorial optimization. arXiv preprint arXiv:1204.5165 (2012)

    Google Scholar 

  79. Fister, I., Yang, X.-S., Brest, J., Fister Jr., I.: Modified firefly algorithm using quaternion representation. Expert Syst. Appl. 40(18), 7220–7230 (2013)

    Google Scholar 

  80. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)

    MATH  MathSciNet  Google Scholar 

  81. Galvez, A., Iglesias, A.: New memetic self-adaptive firefly algorithm for continuous optimization. International Journal of Bio-Inspired Computation (2014)

    Google Scholar 

  82. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Google Scholar 

  83. Glover, F., Laguna, M.: Tabu search. Springer (1999)

    Google Scholar 

  84. Grimaccia, F., Mussetta, M., Zich, R.E.: Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Transactions on Antennas and Propagation 55(3), 781–785 (2007)

    Google Scholar 

  85. Guo, L.: A novel hybrid bat algorithm with harmony search for global numerical optimization. Journal of Applied Mathematics 2013 (2013)

    Google Scholar 

  86. Guo, L., Wang, G.-G., Wang, H., Wang, D.: An effective hybrid firefly algorithm with harmony search for global numerical optimization. The Scientific World Journal 2013 (2013)

    Google Scholar 

  87. Haddad, O.B., Afshar, A., Marino, M.A.: Honey-bees mating optimization (hbmo) algorithm: a new heuristic approach for water resources optimization. Water Resources Management 20(5), 661–680 (2006)

    Google Scholar 

  88. Heinonen, J., Pettersson, F.: Hybrid ant colony optimization and visibility studies applied to a job-shop scheduling problem. Applied Mathematics and Computation 187(2), 989–998 (2007)

    MATH  MathSciNet  Google Scholar 

  89. Hinterding, R., Michalewicz, Z., Peachey, T.C.: Self-adaptive genetic algorithm for numeric functions. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 420–429. Springer, Heidelberg (1996)

    Google Scholar 

  90. Ismail, A., Engelbrecht, A.P.: The self-adaptive comprehensive learning particle swarm optimizer. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 156–167. Springer, Heidelberg (2012)

    Google Scholar 

  91. Fister Jr., I., Fister, D., Fister, I.: A comprehensive review of cuckoo search: variants and hybrids. International Journal of Mathematical Modelling and Numerical Optimisation 4(4), 387–409 (2013)

    MATH  Google Scholar 

  92. Kang, F., Li, J., Xu, Q.: Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Computers & Structures 87(13), 861–870 (2009)

    Google Scholar 

  93. Kavousi-Fard, A., Samet, H., Marzbani, F.: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Systems with Applications 41(13), 6047–6056 (2014)

    Google Scholar 

  94. Layeb, A.: A novel quantum inspired cuckoo search for knapsack problems. International Journal of Bio-Inspired Computation 3(5), 297–305 (2011)

    Google Scholar 

  95. Li, C., Yang, S., Nguyen, T.T.: A self-learning particle swarm optimizer for global optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(3), 627–646 (2012)

    Google Scholar 

  96. Li, X., Yin, M.: A hybrid cuckoo search via lévy flights for the permutation flow shop scheduling problem. International Journal of Production Research 51(16), 4732–4754 (2013)

    Google Scholar 

  97. Liao, X., Zhou, J., Zhang, R., Zhang, Y.: An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems. International Journal of Electrical Power & Energy Systems 43(1), 1340–1345 (2012)

    Google Scholar 

  98. Lin, W.-Y.: A ga–de hybrid evolutionary algorithm for path synthesis of four-bar linkage. Mechanism and Machine Theory 45(8), 1096–1107 (2010)

    MATH  Google Scholar 

  99. Liu, S., Wang, J.: An improved self-adaptive particle swarm optimization approach for short-term scheduling of hydro system. In: International Asia Conference on Informatics in Control, Automation and Robotics, CAR 2009, pp. 334–338. IEEE (2009)

    Google Scholar 

  100. Lovbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid particle swarm optimiser with breeding and subpopulations. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2001, pp. 469–476. Citeseer (2001)

    Google Scholar 

  101. Marinakis, Y., Marinaki, M.: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem. Computers & Operations Research 37(3), 432–442 (2010)

    MATH  MathSciNet  Google Scholar 

  102. Niknam, T.: An efficient hybrid evolutionary algorithm based on pso and hbmo algorithms for multi-objective distribution feeder reconfiguration. Energy Conversion and Management 50(8), 2074–2082 (2009)

    Google Scholar 

  103. Pan, Q.-K., Fatih Tasgetiren, M., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences 181(12), 2455–2468 (2011)

    MathSciNet  Google Scholar 

  104. Peña, J.M., Robles, V., Larrañaga, P., Herves, V., Rosales, F., Pérez, M.S.: GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 361–371. Springer, Heidelberg (2004)

    Google Scholar 

  105. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791. IEEE (2005)

    Google Scholar 

  106. Roy, A.G., Rakshit, P., Konar, A., Bhattacharya, S., Kim, E., Nagar, A.K.: Adaptive firefly algorithm for nonholonomic motion planning of car-like system. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2162–2169. IEEE (2013)

    Google Scholar 

  107. Wang, J., Osagie, E., Thulasiraman, P., Thulasiram, R.K.: Hopnet: A hybrid ant colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Networks 7(4), 690–705 (2009)

    Google Scholar 

  108. Wang, X.-H., Li, J.-J.: Hybrid particle swarm optimization with simulated annealing. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2402–2405. IEEE (2004)

    Google Scholar 

  109. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Information Sciences 181(20), 4515–4538 (2011)

    MATH  MathSciNet  Google Scholar 

  110. Wu, Q., Cao, Y., Wen, J.: Optimal reactive power dispatch using an adaptive genetic algorithm. International Journal of Electrical Power & Energy Systems 20(8), 563–569 (1998)

    Google Scholar 

  111. Yan, X., Zhu, Y., Zou, W., Wang, L.: A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97, 241–250 (2012)

    Google Scholar 

  112. Yang, Z., Tang, K., Yao, X.: Self-adaptive differential evolution with neighborhood search. In: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 1110–1116. IEEE (2008)

    Google Scholar 

  113. Yu, S., Yang, S., Su, S.: Self-adaptive step firefly algorithm. Journal of Applied Mathematics 2013 (2013)

    Google Scholar 

  114. Zhan, Z.-H., Zhang, J., Li, Y., Chung, H.-H.: Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(6), 1362–1381 (2009)

    Google Scholar 

  115. Zhang, J., Ding, X.: A multi-swarm self-adaptive and cooperative particle swarm optimization. Engineering Applications of Artificial Intelligence 24(6), 958–967 (2011)

    Google Scholar 

  116. Zhou, Y., Xie, J., Zheng, H.: A hybrid bat algorithm with path relinking for capacitated vehicle routing problem. Mathematical Problems in Engineering 2013 (2013)

    Google Scholar 

  117. Alander, J.T.: An indexed bibliography of genetic algorithms and neural networks

    Google Scholar 

  118. Ali, Y.M.B.: Evolving multilayer feedforward neural network using adaptive particle swarm algorithm. Int. J. Hybrid Intell. Syst. 8(4), 185–198 (2011)

    Google Scholar 

  119. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks 5, 54–65 (1994)

    Google Scholar 

  120. Asadi, S., Hadavandi, E., Mehmanpazir, F., Nakhostin, M.M.: Hybridization of evolutionary levenberg-marquardt neural networks and data pre-processing for stock market prediction. Knowl.-Based Syst. 35, 245–258 (2012)

    Google Scholar 

  121. Caudell, T.P., Dolan, C.P.: Parametric connectivity: Training of constrained networks using genetic algorithms. In: David Schaffer, J. (ed.) Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann Publishers (1989)

    Google Scholar 

  122. Cruz-Ramírez, M., Hervás-Martínez, C., Gutiérrez, P.A., Pérez-Ortiz, M., Briceño, J., de la Mata, M.: Memetic pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem. Soft. Comput. 17(2), 275–284 (2013)

    Google Scholar 

  123. Cui, Z., Yang, C., Sanyal, S.: Training artificial neural networks using appm. IJWMC 5(2), 168–174 (2012)

    Google Scholar 

  124. da Silva, A.J., Mineu, N.L., Ludermir, T.B.: Evolving artificial neural networks using adaptive differential evolution. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp. 396–405. Springer, Heidelberg (2010)

    Google Scholar 

  125. Delgado, M., Pegalajar, M.C., Cuéllar, M.P.: Evolutionary training for dynamical recurrent neural networks: an application in finantial time series prediction. Mathware & Soft Computing 13(2), 89–110 (2006)

    MATH  MathSciNet  Google Scholar 

  126. Elhachmi, J., Guennoun, Z.: Evolutionary neural networks algorithm for the dynamic frequency assignment problem. International Journal of Computer Science & Information Technology 3(3), 49–61 (2011)

    Google Scholar 

  127. Fernández, J.C., Hervás, C., Martínez-Estudillo, F.J., Gutiérrez, P.A.: Memetic pareto evolutionary artificial neural networks to determine growth/no-growth in predictive microbiology. Appl. Soft Comput. 11(1), 534–550 (2011)

    Google Scholar 

  128. Furtuna, R., Curteanu, S., Leon, F.: Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic. Appl. Soft Comput. 12(1), 133–144 (2012)

    Google Scholar 

  129. Gao, W.: Financial data forecasting by evolutionary neural network based on ant colony algorithm. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI 2011, Part III. LNCS, vol. 7004, pp. 262–269. Springer, Heidelberg (2011)

    Google Scholar 

  130. Garro, B.A., Sossa, H., Vazquez, R.A.: Design of artificial neural networks using a modified particle swarm optimization algorithm. In: Proceedings of the 2009 International Joint Conference on Neural Networks, IJCNN 2009, pp. 2363–2370 (2009)

    Google Scholar 

  131. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: Reynolds, R., Abbass, H., Tan, K.C., Mckay, B., Essam, D., Gedeon, T. (eds.) Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2588–2595. IEEE (2003)

    Google Scholar 

  132. Ismail, A.Z., Jeng, D.S.: SEANN: A Self-evolving Neural Network based on PSO and JPSO algorithms

    Google Scholar 

  133. Kala, R., Shukla, A., Tiwari, R.: Modular symbiotic adaptive neuro evolution for high dimensionality classificatory problems. Intelligent Decision Technologies 5(4), 309–319 (2011)

    Google Scholar 

  134. Kassahun, Y., Sommer, G.: Efficient reinforcement learning through evolutionary acquisition of neural topologies. In: ESANN, pp. 259–266 (2005)

    Google Scholar 

  135. Kaylani, A.: An Adaptive Multiobjective Evolutionary Approach to Optimize Artmap Neural Networks. PhD thesis, Orlando, FL, USA (2008), AAI3335346

    Google Scholar 

  136. Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural networks using cartesian genetic programming. Neurocomputing 121, 274–289 (2013)

    Google Scholar 

  137. Khan, M.M., Khan, G.M., Miller, J.F.: Evolution of neural networks using cartesian genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  138. Kulluk, S.: A novel hybrid algorithm combining hunting search with harmony search algorithm for training neural networks. JORS 64(5), 748–761 (2013)

    Google Scholar 

  139. Liao, S.-H., Hsieh, J.-G., Chang, J.-Y., Lin, C.-T.: Training neural networks via simplified hybrid algorithm mixing nelder–mead and particle swarm optimization methods. Soft Computing, 1–11 (2014)

    Google Scholar 

  140. Mandischer, M.: Representation and evolution of neural networks, pp. 643–649. Springer (1993)

    Google Scholar 

  141. Matteucci, M.: ELeaRNT: Evolutionary learning of rich neural network topologies. Technical report, Carnegie Mellon University (2002)

    Google Scholar 

  142. Lee, M.-C., Horng, M.-H., Lee, Y.-X., Liou, R.-J.: Firefly Meta-Heuristic Algorithm for Training the Radial Basis Function Network for Data Classification and Disease Diagnosis. InTech (2012)

    Google Scholar 

  143. Mirjalili, S., Sadiq, A.S.: Magnetic optimization algorithm for training multi layer perceptron. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 42–46 (May 2011)

    Google Scholar 

  144. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics and Computation 218(22), 11125–11137 (2012)

    MATH  MathSciNet  Google Scholar 

  145. Moriarty, D., Miikkulainen, R.: Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 5, 373–399 (1998)

    Google Scholar 

  146. Nandy, S., Karmakar, M., Sarkar, P.P., Das, A., Abraham, A., Paul, D.: Agent based adaptive firefly back-propagation neural network training method for dynamic systems. In: 2012 12th International Conference on Hybrid Intelligent Systems (HIS), pp. 449–454 (December 2012)

    Google Scholar 

  147. Nawi, N.M., Khan, A., Rehman, M.Z.: Csbprnn: A new hybridization technique using cuckoo search to train back propagation recurrent neural network. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). LNEE, vol. 285, pp. 111–118. Springer, Heidelberg (2014)

    Google Scholar 

  148. Nawi, N.M., Rehman, M.Z., Khan, A.: A new bat based back-propagation (BAT-BP) algorithm. In: Swiątek, J., Grzech, A., Swiątek, P., Tomczak, J.M. (eds.) Advances in Systems Science. AISC, vol. 240, pp. 395–404. Springer, Heidelberg (2014)

    Google Scholar 

  149. Neruda, R., Slušný, S.: Parameter genetic learning of perceptron networks. In: Proceedings of the 10th WSEAS International Conference on Systems, ICS 2006, pp. 92–97 (2006)

    Google Scholar 

  150. Nourani, E., Rahmani, A.-M., Navin, A.H.: Forecasting stock prices using a hybrid artificial bee colony based neural network. In: 2012 International Conference on Innovation Management and Technology Research (ICIMTR), pp. 486–490 (May 2012)

    Google Scholar 

  151. Oong, T.H., Isa, N.A.M.: Adaptive evolutionary artificial neural networks for pattern classification. IEEE Transactions on Neural Networks 22(11), 1823–1836 (2011)

    Google Scholar 

  152. Risi, S., Stanley, K.O.: Enhancing es-hyperneat to evolve more complex regular neural networks. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1539–1546 (2011)

    Google Scholar 

  153. Sarangi, P.P., Sahu, A., Panda, M.: Article: A hybrid differential evolution and back-propagation algorithm for feedforward neural network training. International Journal of Computer Applications 84(14), 1–9 (2013); Published by Foundation of Computer Science, New York, USA

    Google Scholar 

  154. Sermpinis, G., Theofilatos, K.A., Karathanasopoulos, A.S., Georgopoulos, E.F., Dunis, C.L.: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization. European Journal of Operational Research 225(3), 528–540 (2013)

    MATH  MathSciNet  Google Scholar 

  155. Shah, H., Ghazali, R., Nawi, N.M.: Using artificial bee colony algorithm for mlp training on earthquake time series data prediction. CoRR, abs/1112.4628 (2011)

    Google Scholar 

  156. Shen, W., Guo, X., Wu, C., Wu, D.: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowl.-Based Syst. 24(3), 378–385 (2011)

    Google Scholar 

  157. Slowik, A.: Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training. IEEE Transactions on Industrial Electronics 58(8), 3160–3167 (2011)

    Google Scholar 

  158. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Google Scholar 

  159. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving neural network topologies. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 569–577 (2002)

    Google Scholar 

  160. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Google Scholar 

  161. Suchorzewski, M.: Evolving scalable and modular adaptive networks with developmental symbolic encoding. Evolutionary Intelligence 4(3), 145–163 (2011)

    Google Scholar 

  162. Turner, A.J., Miller, J.F.: Cartesian genetic programming encoded artificial neural networks: A comparison using three benchmarks. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 1005–1012 (2013)

    Google Scholar 

  163. Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Alkon, D.L.: Accelerating the convergence of the back-propagation method. Biological Cybernetics 59(4-5), 257–263 (1988)

    Google Scholar 

  164. Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Computing 14(3), 347–361 (1990)

    Google Scholar 

  165. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks 8, 694–713 (1996)

    Google Scholar 

  166. Yu, J.J.Q., Lam, A.Y.S., Li, V.O.K.: Evolutionary artificial neural network based on chemical reaction optimization. In: IEEE Congress on Evolutionary Computation, pp. 2083–2090. IEEE (2011)

    Google Scholar 

  167. Zhang, J.-R., Zhang, J., Lok, T.-M., Lyu, M.R.: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Applied Mathematics and Computation 185(2), 1026–1037 (2007)

    MATH  Google Scholar 

  168. Zhang, Y., Wu, L.: Crop classification by forward neural network with adaptive chaotic particle swarm optimization. Sensors 11(5), 4721–4743 (2011)

    Google Scholar 

  169. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: Proceedings of the 11th International Joint Conference on Artificial intelligence (IJCAI 1989), vol. 1, pp. 762–767. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

  170. Hernández, H., Blum, C.: Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs. Swarm Intelligence, 117–150 (2012)

    Google Scholar 

  171. Chen, W.-N., Zhang, J., Chung, H.S.H., Zhong, W.-L., Wu, W.-G., Shi, Y.-H.: A novel set-based particle swarm optimization method for discrete optimization problems. Trans. Evol. Comp. 14, 278–300 (2010)

    Google Scholar 

  172. Zhang, W.-J., Xie, X.-F.: DEPSO: Hybrid Particle Swarm with Differential Evolution Operator. IEEE International Conference on Systems, Man and Cybernetics 4, 3816–3821 (2003)

    Google Scholar 

  173. Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, London (2014)

    MATH  Google Scholar 

  174. Ashby, W.R.: Princinples of the self-organizing sysem. In: Von Foerster, H., Zopf Jr., G.W. (eds.) Pricinples of Self-Organization: Transactions of the University of Illinois Symposium, pp. 255–278. Pergamon Press, London (1962)

    Google Scholar 

  175. Booker, L., Forrest, S., Mitchell, M., Riolo, R.: Perspectives on Adaptation in Natural and Artificial Systems. Oxford University Press, Oxford (2005)

    Google Scholar 

  176. Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: Overview and conceptural comparision. ACM Comput. Surv. 35, 268–308 (2003)

    Google Scholar 

  177. Yang, X.S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Computing and Applications 23(7-8), 2051–2057 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Fister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fister, I., Strnad, D., Yang, XS., Fister, I. (2015). Adaptation and Hybridization in Nature-Inspired Algorithms. In: Fister, I., Fister Jr., I. (eds) Adaptation and Hybridization in Computational Intelligence. Adaptation, Learning, and Optimization, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-14400-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14400-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14399-6

  • Online ISBN: 978-3-319-14400-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics