Skip to main content

Photoionization Spectra and Ionization Potentials of Energetic Molecules

  • Conference paper
  • First Online:
Frontiers in Quantum Methods and Applications in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 29))

  • 758 Accesses

Abstract

We examine theoretically photoionization processes of molecules component of explosives having at least one explosophore group NO2. We review previous results obtained for the nitramide, N,N-dimethylnitramine and 1,1-diamino-2,2-dinitroethylene (FOX-7 or DADNE) molecules and present new results for the two conformers of nitromethane. A systematization of the results is given. The calculations employed the Symmetry-Adapted-Cluster Configuration Interaction (SAC-CI) ab initio wave function and the monopole approximation to compute photoionization cross sections. Assignments of the ionization bands are provided. The overall agreement between computed spectra, ionization potentials and experiment is very good. We show that the SAC-CI ionization potentials are far superior when compared with Koopmans theorem values and much closer to experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali AN, Son SF, Asay BW, Sander RK (2005) Importance of the gas phase role to the prediction of energetic material behavior: an experimental study. J Appl Phys 97:7

    Article  Google Scholar 

  2. Anders G, Borges I (2011) Topological analysis of the molecular charge density and impact sensitivy models of energetic molecules. J Phys Chem A 115:9055–9068

    Article  CAS  Google Scholar 

  3. Attina M, Cacace F, Ciliberto E, Depetris G, Grandinetti F, Pepi F et al (1993) Gas-phase ion chemistry of nitramide—a mass-spectrometric and ab-initio study of H2N-NO2 and the H2N-NO2radical+, [H2N-NO2]H+, and [HN-NO2]- ions. J Am Chem Soc 115:12398–12404

    Article  CAS  Google Scholar 

  4. Bernstein ER (2005) Role of excited electronic states in the decomposition of energetic materials. In: Shaw RW, Brill TB, Thompson DL (eds) Overviews of recent research on energetic materials, vol 16. World Scientific, Singapore, p 161

    Google Scholar 

  5. Bhattacharya A, Bernstein ER (2011) Nonadiabatic decomposition of gas-phase RDX through conical intersections: an ONIOM-CASSCF study. J Phys Chem A 115:4135–4147

    Article  CAS  Google Scholar 

  6. Bhattacharya A, Guo YQ, Bernstein ER (2010) Nonadiabatic reaction of energetic molecules. Acc Chem Res 43:1476–1485

    Article  CAS  Google Scholar 

  7. Borges I (2008) Excited electronic and ionized states of N,N-dimethylnitramine. Chem Phys 349:256–262

    Article  CAS  Google Scholar 

  8. Borges I (2008) Excited electronic and ionized states of the nitramide molecule, H2NNO2, studied by the symmetry adapted-cluster configuration method. Theoret Chem Acc 121:239–246

    Article  CAS  Google Scholar 

  9. Borges I, Aquino AJ, Barbatti M, Lischka H (2009) The electronically excited states of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine): vertical excitations. Int J Quantum Chem 109:2348–2355

    Article  CAS  Google Scholar 

  10. Borges I, Barbatti M, Aquino AJA, Lischka H (2012) Electronic spectra of nitroethylene. Int J Quantum Chem 112:1225–1232

    Article  CAS  Google Scholar 

  11. Borges I Jr (2014) Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7. J Mol Model 20:1–7

    Google Scholar 

  12. Cramer CJ (2004) Essentials of computational chemistry: theories and models. Wiley, Chichester

    Google Scholar 

  13. de Souza GGB, Rocco MLM, Boechat-Roberty HM, Lucas CA, Borges I, Hollauer E (2001) Valence electronic excitation of the SiF4 molecule: generalized oscillator strength for the 5t(2)→ 6a(1) transition and ab initio calculation. J Phys B-Atomic Mol Opt Phys 34:1005–1017

    Article  Google Scholar 

  14. Dewar MJS, Ritchie JP, Alster J (1985) Ground-state of molecules. 65. Thermolysis of molecules containing NO2 groups. J Org Chem 50:1031–1036

    Article  CAS  Google Scholar 

  15. Farrokhpour H, Fathi F (2011) Theoretical study of valance photoelectron spectra of hypoxanthine, xanthine, and caffeine using direct symmetry-adapted cluster/configuration interaction methodology. J Comput Chem 32:2479–2491

    Article  CAS  Google Scholar 

  16. Farrokhpour H, Ghandehari M (2013) Photoelectron spectra of some important biological molecules: symmetry-adapted-cluster configuration interaction study. J Phys Chem B 117:6027–6041

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2003) Gaussian 03, Revision C 02, Gaussian Inc., Pittsburgh

    Google Scholar 

  18. Gilman JJ (1995) Chemical-reactions at detonation fronts in solids. Philos Mag B-Phys Condens Matter Stat Mech Electron Opt Magn Prop 71:1057–1068

    CAS  Google Scholar 

  19. Gindulyte A, Massa L, Huang LL, Karle J (1999) Ab initio study of unimolecular decomposition of nitroethylene. J Phys Chem A 103:11040–11044

    Article  CAS  Google Scholar 

  20. Gonzalez L, Escudero D, Serrano-Andres L (2012) Progress and challenges in the calculation of electronic excited states. ChemPhysChem 13:28–51

    Article  CAS  Google Scholar 

  21. Guo YQ, Greenfield M, Bhattacharya A, Bernstein ER (2007) On the excited electronic state dissociation of nitramine energetic materials and model systems. J Chem Phys 127:10

    Google Scholar 

  22. Harris LE (1973) Lower electronic states of nitrite and nitrate ion, nitromethane, nitramide, nitric-acid, and nitrate esters. J Chem Phys 58:5615–5626

    Article  CAS  Google Scholar 

  23. Hasegawa J, Miyahara T, Nakashima H, Nakatsuji H (2012) SAC-CI methodology applied to molecular spectroscopy and photo-biology. In: Clementi E, Andre JM, McCammon JA (eds) Theory and applications in computational chemistry: the first decade of the second millennium, vol 1456. American Institute of Physics, Melville, pp 101–108

    Google Scholar 

  24. Hollas JM (1995) Modern spectroscopy, 2nd edn. Wiley, Chichester

    Google Scholar 

  25. Kandel RJ (1955) Appearance potential studies. 2. nitromethane. J Chem Phys 23:84–87

    Article  CAS  Google Scholar 

  26. Koch H, Jorgensen P (1990) Coupled cluster response functions. J Chem Phys 93:3333–3344

    Article  CAS  Google Scholar 

  27. Kuklja MM, Aduev BP, Aluker ED, Krasheninin VI, Krechetov AG, Mitrofanov AY (2001) Role of electronic excitations in explosive decomposition of solids. J Appl Phys 89:4156–4166

    Article  CAS  Google Scholar 

  28. Martin RL, Shirley DA (1976) Theory of core-level photoemission correlation state spectra. J Chem Phys 64:3685–3689

    Article  CAS  Google Scholar 

  29. Morita M, Yabushita S (2008) Calculations of photoionization cross-sections with variationally optimized complex gaussian-type basis functions. Chem Phys 349:126–132

    Article  CAS  Google Scholar 

  30. Nakatsuji H (1979) Cluster expansion of the wavefunction—calculation of electron correlations in ground and excited-states by SAC and SAC CI theories. Chem Phys Lett 67:334–342

    Article  CAS  Google Scholar 

  31. Nakatsuji H (1979) Cluster expansion of the wavefunction—electron correlations in ground and excited-states by SAC (symmetry-adapted-cluster) and SAC CI theories. Chem Phys Lett 67:329–333

    Article  CAS  Google Scholar 

  32. Nakatsuji H (1978) Cluster expansion of wavefunction—excited-states. Chem Phys Lett 59:362–364

    Article  CAS  Google Scholar 

  33. Nakatsuji H, Hirao K (1978) Cluster expansion of wavefunction—symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory. J Chem Phys 68:2053–2065

    Article  CAS  Google Scholar 

  34. Plasser F, Barbatti M, Aquino AJA, Lischka H (2012) Electronically excited states and photodynamics: a continuing challenge. Theor Chem Acc 131

    Google Scholar 

  35. Rabalais JW (1972) Photoelectron spectroscopic investigation of electronic-structure of nitromethane and nitrobenzene. J Chem Phys 57:960–967

    Article  CAS  Google Scholar 

  36. Sharma J, Beard BC, Chaykovsky M (1991) Correlation of impact sensitivity with electronic levels and structure of molecules. J Phys Chem 95:1209–1213

    Article  CAS  Google Scholar 

  37. Singh S (2007) Sensors—an effective approach for the detection of explosives. J Hazard Mater 144:15–28

    Article  CAS  Google Scholar 

  38. Stanton JF, Bartlett RJ (1993) The equation of motion coupled-cluster method—a systematic biorthogonal approach to molecular-excitation energies, transition-probabilities, and excited-state properties. J Chem Phys 98:7029–7039

    Article  CAS  Google Scholar 

  39. Suzer S, Lee ST, Shirley DA (1976) Correlation satellites in atomic photoelectron-spectra of group-iia and group-iib elements. Phys Rev A 13:1842–1849

    Article  CAS  Google Scholar 

  40. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications, Mineola

    Google Scholar 

  41. Szalay PG, Muller T, Gidofalvi G, Lischka H, Shepard R (2012) Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem Rev 112:108–181

    Article  CAS  Google Scholar 

  42. Watanabe K, Nakayama T, Mottl J (1962) Ionization potentials of some molecules. J Quant Spectrosc Radiat Transfer 2:369–382

    Article  Google Scholar 

  43. White MG, Colton RJ, Lee TH, Rabalais JW (1975) Electronic-structure of N,N-dimethylnitramine and N,N-dimethylnitrosamine from X-ray and UV electron-spectroscopy. Chem Phys 8:391–398

    Article  CAS  Google Scholar 

  44. Williams F (1971) Electronic states of solid explosives and their probable role in detonations. Advances in chemical physics. Wiley, pp 289–302

    Google Scholar 

  45. Windawi HM, Varma SP, Cooper CB, Williams F (1976) Analysis of lead azide thin-films by Rutherford backscattering. J Appl Phys 47:3418–3420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Faperj, CNPq and Capes, Brazilian Agencies, for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Borges Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Borges, I., Uhl, E. (2015). Photoionization Spectra and Ionization Potentials of Energetic Molecules. In: Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Frontiers in Quantum Methods and Applications in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14397-2_9

Download citation

Publish with us

Policies and ethics