Skip to main content

Proton Quantum Confinement on Symmetric Dimers of Ammonia and Lower Amine Homologs

  • Conference paper
  • First Online:
Frontiers in Quantum Methods and Applications in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 29))

Abstract

Behavior of shared proton in symmetric dimers of ammonia and lower amine homologs were studied by several theoretical methods. Corresponding optimized structures by density functional theory show an intuitive hypsochromic shift as the degree of methylation is enhanced. Inclusion of nuclear quantum effect, however, changes the whole picture. It was found out that the fundamental vibrational transition corresponding to the shared proton’s stretching motion, νsp is counter intuitive. Based from these calculations, there is a bathochromic shift from ammonia to trimethylamine. These ramifications do clearly indicate that proton is a quantum object. Furthermore, spectroscopic features for the stretching modes of the shared proton and H-bond donor-acceptor atoms were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleland WW, Kreevoy MM (1994) Science 264:1887

    Article  CAS  Google Scholar 

  2. Voet D, Voet J (2004) Biochemistry, 3rd edn. Wiley, New York

    Google Scholar 

  3. Baker EN (2006) Int Tables Crystallogr F:546–552

    Google Scholar 

  4. Graham JD, Buytendyk AM, Wang D, Bowen KH, Collins KD (2013) Biochemistry 53:344

    Article  Google Scholar 

  5. DeCoursey TE (2003) Physiol Rev 83:475

    Article  CAS  Google Scholar 

  6. Garczarek F, Gerwert K (2006) Nature 439:109

    Article  CAS  Google Scholar 

  7. Lee J, Kim CH, Joo T (2013) J Phys Chem A 117:1400–1405

    Article  CAS  Google Scholar 

  8. Pimentel GC, McClellan AL (1960) The hydrogen bond. Freeman and Company, San Francisco

    Google Scholar 

  9. Hilbert GE, Wulf OR, Hendricks SB, Liddel U (1936) J Am Chem Soc 58:548–555

    Article  CAS  Google Scholar 

  10. Ellis JW (1939) J Am Chem Soc 51:1384

    Article  Google Scholar 

  11. Schwarz HA (1980) J Chem Phys 72:284–287

    Article  CAS  Google Scholar 

  12. Price JM, Crofton MW, Lee YT (1989) J Chem Phys 91:2749–2751

    Article  CAS  Google Scholar 

  13. Price JM, Crofton MW, Lee YT (1989) J Chem Phys 95:2182–2195

    Article  Google Scholar 

  14. Roscioli JR, McCunn LR, Johnson MA (2007) Science 316:249–254

    Article  CAS  Google Scholar 

  15. Scheiner S, Harding LB (1981) J Am Chem Soc 103:2169–2173

    Article  CAS  Google Scholar 

  16. Asada T, Haraguchi H, Kitaura K (2001) J Phys Chem A 105:7423–7428

    Article  CAS  Google Scholar 

  17. Yang Y, Kühn O (2011) Chem Phys Lett 505:1–4

    Article  CAS  Google Scholar 

  18. Asmis KR, Yang Y, Santambrogio G, Brümmer M, Roscioli JR, McCunn LR, Johnson MA, Kühn O (2007) Angew Chem Int Ed 46:8691–9694

    Article  CAS  Google Scholar 

  19. Yang Y (2008) PhD Dissertation, Freie Universität Berlin

    Google Scholar 

  20. Ishibashi H et al (2008) Chem Phys Chem 9:383

    CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr.,Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford. Gaussian 09, Revision A.02

    Google Scholar 

  22. Tuckerman ME, Marx D, Klein ML, Parrinello (1996) J Chem Phys 104:5579

    Google Scholar 

  23. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) Nature 397:601

    Article  CAS  Google Scholar 

  24. Grotendorst J, Marx D, Muramatsu A (2002) Path integration via molecular dynamics. In: Von Neumann J (ed) Quantum simulations of complex many-body systems: from theory to algorithms, vol 10. Institute for Computing, Julich, p 269

    Google Scholar 

  25. Simons J, Nichols J (1997) Quantum mechanics in chemistry. Oxford University Press, New York

    Google Scholar 

  26. Ratner MA, Schatz GC (2000) Introduction to quantum mechanics in chemistry. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Academia Sinica and the National Science Council (NSC101-2113-M-001-023-MY3) of Taiwan. Computational resources are supported in part by the National Center for High Performance Computing. We wish to thank contributions from Linda Shen and Tzu-Chien Wang at the early stage of this project. Fruitful discussions with Prof. Yonggang Yang and Prof. Masanori Tachikawa are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jer-Lai Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tan, J.A., Li, JW., Kuo, JL. (2015). Proton Quantum Confinement on Symmetric Dimers of Ammonia and Lower Amine Homologs. In: Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Frontiers in Quantum Methods and Applications in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14397-2_5

Download citation

Publish with us

Policies and ethics