Skip to main content

Relativistic Quantum Chemistry: An Advanced Approach to the Construction of the Green Function of the Dirac Equation with Complex Energy and Mean-Field Nuclear Potential

  • Conference paper
  • First Online:
Frontiers in Quantum Methods and Applications in Chemistry and Physics

Abstract

We present an advanced approach to construction of the electron Green’s function of the Dirac equation with a non-singular central nuclear potential and complex energy. The Fermi-model and relativistic mean-field (RMF) nuclear potentials are used. The radial Green’s function is represented as a combination of two fundamental solutions of the Dirac equation. The approach proposed includes a procedure of generating the relativistic electron functions with performance of the gauge invariance principle. In order to reach the gauge invariance principle performance we use earlier developed QED perturbation theory approach. In the fourth order of the QED perturbation theory (PT) there are diagrams, whose contribution into imaginary part of radiation width Im δE for the multi-electron system accounts for multi-body correlation effects. A minimization of the functional Im δE leads to integral-differential Dirac-Kohn-Sham-like density functional equations. Further check for the gauge principle performance is realized by means of the Ward identities. In the numerical procedure we use the effective Ivanova-Ivanov’s algorithm, within which a determination of the Dirac equation fundamental solutions is reduced to solving the single system of the differential equations. This system includes the differential equations for the nuclear potential and equations for calculating the integrals of \( {\iint {dr_{1} dr_{2} } } \) type in the Mohr’s formula for definition of the self-energy shift to atomic levels energies. Such a approach allows to compensate a main source of the errors, connected with numerical integration \( \int {d\xi } \) and summation on χ in the Mohr’s expressions during calculating the self-energy radiative correction to the atomic levels energies. As illustration, data on the nuclear finite size effect and self-energy Lamb shift contributions to the energy of 2s-2p1/2 transition for the Li-like ions of argon, iron, krypton and uranium are presented and compared with available theoretical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman RP (1949) Phys Rev 76:749

    Article  CAS  Google Scholar 

  2. Stueckelberg ECG, Rivier D (1949) Helv Phys Acta 13:215

    Google Scholar 

  3. Sakurai JJ (1967) Advanced quantum mechanics. Addison-Wesley, New York

    Google Scholar 

  4. Sakurai JJ (2011) Physics 221B quantum mechanics. Notes 34 green’s functions in quantum mechanics. University of California, Berkeley

    Google Scholar 

  5. Itzykson C, Zuber J-B (1980) Em quantum field theory. McGraw-Hill Inc., New York

    Google Scholar 

  6. Landau LD, Lifshits EM, Pitaevsky LP (1985) Quantum electrodynamics. Nauka, Mposcow

    Google Scholar 

  7. Schweber SS (1961) An introduction to relativistic quantum field theory. Evanston, Illinois

    Google Scholar 

  8. Bjorken JD, Drell SD (1965) Relativistic quantum field theory. McGraw-Hill, New York

    Google Scholar 

  9. Braun MA, Gurchumeliya AD, Safronova UI (1984) Relativistic theory of atom. Nauka, Moscow, pp 1–268

    Google Scholar 

  10. Aglitsky EV, Safronova UI (1985) Spectroscopy of autoionization states of atomic systems. Energoatomizdat, Moscow, pp 1–160

    Google Scholar 

  11. Meucci A, Giusti C, Pacati FD (2005) Nucl Phys A 756:359

    Article  Google Scholar 

  12. Gu Y-Q (2006) High energy physics—theory (hep-th). arXiv:hep-th/0612214

  13. Driker MN, Ivanova EP, Ivanov LN (1981) Opt Spectr 50:551

    Google Scholar 

  14. Driker MN, Ivanova EP, Ivanov LN (1983) Opt Spectr 55:224

    CAS  Google Scholar 

  15. Ivanova EP, Ivanov LN, Kalinkin AN (1985) Nucl Phys 42:355

    Google Scholar 

  16. Shabaev VM (2002) Phys Rep 356:119

    Article  CAS  Google Scholar 

  17. Shabaev VM, Tupitsyn II, Pachucki K, Plunien G, Yerokhin VA (2005) Phys Rev A 72:062105

    Article  Google Scholar 

  18. Éric-Olivier LB, Indelicato P, Shabaev VM (2001) The hydrogen atom, vol 570. In: Lecture notes in physics, p 746

    Google Scholar 

  19. Dzuba VA, Flambaum VV, Silvestrov PG, Sushkov DE (1991) Phys Rev A 44:2828

    Article  CAS  Google Scholar 

  20. Flambaum VV, Ginges JSM (2005) Phys Rev A 72:052115

    Article  Google Scholar 

  21. Neto AA, Ferreira LG (1976) Phys Rev B 14:4390

    Article  Google Scholar 

  22. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Google Scholar 

  23. Glushkov AV (2010) Green’s function method in relativistic quantum chemistry. Odessa, Astroprint, pp 1–450

    Google Scholar 

  24. Grant IP (2007) Relativistic quantum theory of atoms and molecules. Theory and computation, springer series on atomic, optical, and plasma physics, vol 40, pp 587–626

    Google Scholar 

  25. Grant IP, Quiney HM (2000) Int J Quant Chem 80:283

    Article  CAS  Google Scholar 

  26. Grant IP, Quiney HM (1993) Phys Scripta 46:132

    Google Scholar 

  27. Wilson S (2007) Recent advances in theoretical physics and chemistry systems, vol 16. In: Maruani J, Lahmar S, Wilson S, Delgado-Barrio G (eds) Series: progress in theoretical chemistry and physics, p 11

    Google Scholar 

  28. Wilson S (2001) J MolStr Theochem 547:279

    Article  CAS  Google Scholar 

  29. Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, p 152

    Google Scholar 

  30. Glushkov AV (2006) Relativistic and correlation effects in spectra of atomic systems. Nauka, Moscow-Odessa, pp 1–700

    Google Scholar 

  31. Bell KL, Berrington KA, Crothers DSF, Hibbert A, Taylor KT (2002) Bertha: 4-component relativistic molecular quantum mechanics, in supercomputing, collision processes, and application. IN: Series: physics of atoms and molecules. Springer, Berlin, pp 213–224

    Google Scholar 

  32. Reiher M, Hess B (2000) Modern methods and algorithms of quantum chemistry, vol 3. In: Grotendorst J (ed) John von Neumann Institute for Computing, Julich, NIC Series, pp 479–505

    Google Scholar 

  33. Quiney HM (2002) Relativistic quantum mechanics of atoms and molecules. new trends in quantum systems in chemistry and physics. In: Series: progress in theoretical chemistry and physics, vol 6, pp 135–173

    Google Scholar 

  34. Mohr PJ (1993) Phys Scripta 46:44–52

    Article  Google Scholar 

  35. Mohr PJ (1983) Atom Data Nucl Data Tabl 24:453–470

    Article  Google Scholar 

  36. Mohr PJ (1982) Phys Rev A 26:2338–2354

    Article  CAS  Google Scholar 

  37. Gould H (1993) Phys Scripta 46:61–64

    Article  Google Scholar 

  38. Blundell SA (1993) Phys Scripta 46:144–150

    Article  Google Scholar 

  39. Indelicato P, Desclaux J (1990) Phys Rev A A42:5139–5148

    Article  Google Scholar 

  40. Cheng K, Kim Y, Desclaux J (1979) Atom Data Nucl Data Tabl 24:11–88

    Article  Google Scholar 

  41. Persson H, Lindgren L, Salomonson S (1993) Phys Scripta 46:125–131

    Article  Google Scholar 

  42. Sapirstein J, Cheng KT (2005) Phys Rev A 71:022503

    Article  Google Scholar 

  43. Johnson WR, Idrees M, Sapirstein J (1987) Phys Rep 35:3218–3222

    CAS  Google Scholar 

  44. Ionescu DC, Reinhardt R, Muller B et al (1988) Phys Rep 38:618–625

    Google Scholar 

  45. Ivanov LN, Ivanova EP (1974) Theor Math Phys 20:282

    Article  Google Scholar 

  46. Ivanov LN, Ivanova EP, Aglitsky EV (1988) Phys Rep 188:315

    Article  Google Scholar 

  47. Ivanov LN, Ivanova EP, Aglitsky EV (1986) Izv AS USSR 50:1349

    Google Scholar 

  48. Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) Phys Scripta 32:512

    Article  Google Scholar 

  49. Ivanova EP, Glushkov AV (1985) Opt Spectr 58:931

    Google Scholar 

  50. Ivanov LN, Ivanova EP, Zaridze G (1988) Soviet Phys 41:87

    Google Scholar 

  51. Ivanov LN, Ivanova EP, Zaridze G (1991) Preprint of Institute of Spectroscopy of Russian Academy of Sciences, N2, Troitsk

    Google Scholar 

  52. Ivanov LN, Ivanova EP, Glushkov AV (1992) Preprint of Institute of Spectroscopy of Russian Academy of Sciences, N AS-4, Troitsk

    Google Scholar 

  53. Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33

    Article  CAS  Google Scholar 

  54. Glushkov AV, Ivanov LN (1992) Preprint of Institute of Spectroscopy of Russian Academy of Sciences, N AS-1, Troitsk

    Google Scholar 

  55. Glushkov AV, Malinovskaya SV, Khetselius OY, Loboda AV, Sukharev DE, Lovett L (2009) Int J Quant Chem 109:1717

    Article  CAS  Google Scholar 

  56. Khetselius OY (2012) Quantum systems in chemistry and physics: progress in methods and applications. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Series: progress in theoretical chemistry and physics, vol 26. Springer, Berlin, pp 217–230

    Google Scholar 

  57. Glushkov AV, Ambrosov SV, Loboda AV et al (2004) Nucl Phys A Nucl Hadr Phys 734S:21

    Article  Google Scholar 

  58. Glushkov AV (2012) J Phys C 397:012011

    Google Scholar 

  59. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OY (2006) Recent advances in the theory of chemical and physical systems. In: Julien P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Series: progress in theoretical chemistry and physics, vol 15. Springer, Berlin, pp 285

    Google Scholar 

  60. Glushkov AV, Khetselius OY, Loboda AV, Gurnitskaya EP, Florko TA, Sukharev DE, Lovett L (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 505 (2008)

    Google Scholar 

  61. Glushkov AV (2012) Quantum systems in chemistry and physics: progress in methods and applications. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Series: progress in theoretical chemistry and physics, vol 26. Springer, Berlin, pp 231–254

    Google Scholar 

  62. Glushkov AV, Malinovskaya SV (2003) In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear physics. World Scientific, Singapore, pp 242–280

    Chapter  Google Scholar 

  63. Glushkov AV (2005) In: Grzonka D, Czyzykiewicz R, Oelert W, Rozek T, Winter P (eds) Low energy antiproton physics, vol 796. AIP, New York, pp 206–210

    Google Scholar 

  64. Glushkov AV, Lovett L, Khetselius OYu, Gurnitskaya EP, Dubrovskaya YuN, Loboda AV (2009) Int J Mod Phys A Part Fields Gravitation Cosmol Nucl Phys 24:611

    CAS  Google Scholar 

  65. Glushkov AV, Malinovskaya SV, Svinarenko AA, Chernyakova YuG (2004) Int J Quant Chem 99:879

    Article  Google Scholar 

  66. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Int J Quant Chem 104:562

    Article  CAS  Google Scholar 

  67. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Eur Phys J ST 160:195

    Article  Google Scholar 

  68. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Mol Phys (UK) 106:1257

    Article  CAS  Google Scholar 

  69. Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: progress in theoretical chemistry and physics, Springer, Berlin, pp 523–540

    Google Scholar 

  70. Khetselius OYu (2009) Int J Quant Chem 109:3330

    Article  CAS  Google Scholar 

  71. Khetselius OYu (2009) Phys Scripta T135:014023

    Article  Google Scholar 

  72. Khetselius OYu (2012) J Phys C 397:012012

    Google Scholar 

  73. Serot BD, Walecka JD (1986) Advances in nuclear physics, vol 16. In: The relativistic nuclear many body problem. Plenum Press, New York, p 1

    Google Scholar 

  74. Sahoo BK, Gopakumar G, Chaudhuri RK, Das BP, Merlitz H, Mahapatra US, Makherjee D (2003) Phys Rev A 68:040501

    Article  Google Scholar 

  75. Bürvenich T, Madland DG, Maruhn JA, Reinhard P-G (2002) J Nucl Radiochem Sci 3:191

    Article  Google Scholar 

  76. Nagasawa T, Haga A, Nakano M (2004) Phys Rev C 69:034322

    Article  Google Scholar 

  77. Tomaselli M, Schneider SM, Kankeleit E, Kuhl T (1995) Phys Rev C 51:2989

    Article  CAS  Google Scholar 

  78. Labzowsky LN, Johnson WR, Soff G, Schneider SM (1995) Phys Rev A 51:4597

    Article  CAS  Google Scholar 

  79. Glushkov AV, Khetselius OY, Lovett L (2010) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures. In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Series: progress in theoretical chemistry and physics, vol 20. Springer, Berlin, pp 125–172

    Google Scholar 

  80. Glushkov AV, Malinovskaya SV, Vitavetskaya LA, Dubrovskaya YuV, Khetselius OY (2006) Recent advances in theoretical physics and chemistry systems. In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Series: progress in theoretical chemistry and physics, vol 15. Springer, Berlin, pp 301–318

    Google Scholar 

  81. Glushkov AV, Khetselius OY, Svinarenko AA (2012) in: Advances in the theory of quantum systems in chemistry and physics. In: Hoggan PE, Brandas E, Delgado-Barrio G, P.Piecuch (eds) Series: progress in theoretical chemistry and physics, vol 22. Springer, Berlin, pp 51–70

    Google Scholar 

  82. Davidson ER (1972) Rev Mod Phys 44:451

    Article  CAS  Google Scholar 

  83. Davidson ER, Feller DJ (1981) Chem Phys 74:3977

    Google Scholar 

  84. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  85. Kohn W, Sham LJ (1965) Phys Rev A 140:1131

    Article  Google Scholar 

  86. Shestakov AF (1979) Opt Spectr 46:51–55

    Google Scholar 

  87. Vainstein LA, Safronova UI (1975) Phys Scripta 31:519

    Article  Google Scholar 

  88. Ivanova EP, Glushkov AV (1986) J Quant Spectr Rad Transfer (USA) 36:127

    Article  CAS  Google Scholar 

  89. Glushkov AV, Ivanov LN (1992) Shift and deformation of radiation atomic lines in the laser emission field. Multiphoton processes. Preprint of Institute for Spectroscopy of the USSR Academy of Sciences, ISAN, Moscow-Troitsk, AS N3, pp 1–12

    Google Scholar 

  90. Glushkov AV, Ivanov LN (1992) A broadening of the thulium atom autoionization resonances in a weak electric field. Preprint of Institute for Spectroscopy of the USSR Academy of Sciences, ISAN, Moscow-Troitsk, AS N3, pp 1–10

    Google Scholar 

  91. Ivanova EP, Grant IP (1998) J Phys B 31:2871

    Article  CAS  Google Scholar 

  92. E.P. Ivanova, and I.P. Grant, S.J. Rose, X-ray Lasers (1998) Proc. (1999), pp. 383–386

    Google Scholar 

  93. Yerokhin VA, Artemyev AN, Shabaev VM (2007) Phys Rev A 75:062501

    Article  Google Scholar 

  94. Yerokhin VA, Indelicato P, Shabaev VM (2006) Phys Rev Lett 97:253004

    Article  CAS  Google Scholar 

  95. Ivanova EP, Zinoviev NA (1999) Quant Electron 29:484

    Article  CAS  Google Scholar 

  96. Ivanova EP, Zinoviev NA (2000) Phys Lett A 274:239

    Article  CAS  Google Scholar 

  97. Ivanova EP (2009) Atom Data Nucl Data Tabl 95(6):786

    Article  CAS  Google Scholar 

  98. Ivanova EP (2010) Phys Rev A 82(4):043824

    Article  Google Scholar 

  99. Ivanova EP (2011) Atom Data Nucl Data Tabl 97(1):1

    Article  CAS  Google Scholar 

  100. Indelicato P, Boucard S, Covita DS et al (2007) Nucl Instr Methods Phys Res A 580:8

    Article  CAS  Google Scholar 

  101. Glushkov AV (2012) J Phys C Ser 397:012011

    Google Scholar 

Download references

Acknowledgments

One of authors (A.V.G.) would like to thank Professor Marco Nascimento for the invitation to present the invited lecture at the International workshop on Quantum Systems in Chemistry, Physics and Biology (QSCP-XVIII; Paraty, Rio de Janeiro, Brazil). The help in editing the manuscript by Ms. Radhika Sree V. is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Glushkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Glushkov, A.V., Svinarenko, A.A., Khetselius, O.Y., Buyadzhi, V.V., Florko, T.A., Shakhman, A.N. (2015). Relativistic Quantum Chemistry: An Advanced Approach to the Construction of the Green Function of the Dirac Equation with Complex Energy and Mean-Field Nuclear Potential. In: Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Frontiers in Quantum Methods and Applications in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14397-2_12

Download citation

Publish with us

Policies and ethics