Skip to main content

Full Quantum Calculations of the Diffusion Rate of Adsorbates

  • Conference paper
  • First Online:
Frontiers in Quantum Methods and Applications in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 29))

Abstract

The dynamical structure factor S(q, E) related to the scattering of particles on mobile adsorbates is evaluated quantum mechanically from the formula proposed by van Hove (Phys. Rev. 95: 249–262, 1954) using eigenfunctions and eigenvalues obtained with the Multiconfiguration Time Dependent Hartree method. Three different one dimensional models for the CO/Cu(100) system and a three dimensional model for H/Pd(111) are investigated. Results are discussed in connection with recent 3He spin echo experiments reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jardine AP, Lee EYM, Ward DJ, Alexandrowicz G, Hedgeland H, Allison W, Ellis J, Pollak E (2010) Determination of the quantum contribution to the activated motion of hydrogen on a metal surface: H/Pt(111). Phys Rev Lett 105:136101. doi:10.1103/PhysRevLett.105.136101. URL: http://link.aps.org/doi/10.1103/PhysRevLett.105.136101

  2. McIntosh EM, Wikfeldt KT, Ellis J, Michaelides A, Allison W (2013) Quantum effects in the diffusion of hydrogen on Ru(0001). J Phys Chem Lett 4:1565–1569. doi:10.1021/jz400622v. URL: http://pubs.acs.org/doi/abs/10.1021/jz400622v

  3. Alexandrowicz G, Jardine AP, Fouquet P, Dworski S, Allison W, Ellis J (2004) Observation of microscopic CO dynamics on Cu(001) using 3He spin-echo spectroscopy. Phys Rev Lett 93:156103

    Google Scholar 

  4. van Hove L (1954) Correlations in space and time and born approximation scattering in systems of interacting particles. Phys Rev 95:249–262

    Article  Google Scholar 

  5. Xiao Y, Dong W, Busnengo HF (2010) Reactive force-field for surface chemical reactions: a case study with hydrogen dissociation on Pd surfaces. J Chem Phys 132, 014704

    Google Scholar 

  6. Marquardt R, Cuvelier F, Olsen RA, Baerends EJ, Tremblay JC, Saalfrank P (2010) A new analytical potential energy surface for the adsorption system CO/Cu(100). J Chem Phys 132:074108

    Google Scholar 

  7. Frischkorn C, Wolf M (2006) Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem Rev 106:4206–4233

    Article  Google Scholar 

  8. Morin M, Levinos NJ, Harris AL (1992) Vibrational energy transfer of CO/Cu(100): nonadiabatic vibration/electron coupling. J Chem Phys 96:3950

    Article  CAS  Google Scholar 

  9. Vazhappilly T, Beyvers S, Klamroth T, Luppi M, Saalfrank P (2007) Vibrationally enhanced associative photodesorption of molecular hydrogen from Ru(0001). Chem Phys 338:299

    Article  CAS  Google Scholar 

  10. Head-Gordon M, Tully JC (1992) Vibrational relaxation on metal surfaces: molecular-orbital theory and application to CO/Cu(100). J Chem Phys 96(5):3939–3949

    Article  CAS  Google Scholar 

  11. Jardine AP, Hedgeland H, Alexandrowicz G, Allison W, Ellis J (2009) 3He spin echo: principles and application to dynamics at surfaces. Prog Surf Sci 84:323–379

    Article  CAS  Google Scholar 

  12. Worth GA, Beck MH, Jäckle A, Meyer HD (2007) The MCTDH package, Version 8.2, (2000). H-D Meyer, Version 8.3 (2002), Version 8.4 (2007), Revision 8 (2012). http://mctdh.uni-hd.de/

  13. Jäckle A, Meyer HD (1996) Product representation of potential energy surfaces. J Chem Phys 104:7974–7984

    Article  Google Scholar 

  14. Jäckle A, Meyer HD (1998) Product representation of potential energy surfaces. II. J Chem Phys 109:3772–3779

    Article  Google Scholar 

  15. Meyer HD, Le Quéré F, Léonard C, Gatti F (2006) Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Chem Phys 329:179–192

    Article  CAS  Google Scholar 

  16. Massalski TB (ed) (1986) Binary alloy phase diagrams. ASM Internations, Ohio

    Google Scholar 

  17. Beck MH, Jäckle A, Worth GA, Meyer HD (2000) The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys Rep 324:1

    Article  CAS  Google Scholar 

  18. Graham AP Toennies JP (1999) Determination of the lateral potential energy surface of single adsorbed atoms and molecules on single crystal surfaces using helium atom scattering. Surf Sci 427/428:1

    Google Scholar 

  19. Gennes PD (1959) Liquid dynamics and inelastic scattering of neutrons. Physica 25(7–12):825–839 doi:http://dx.doi.org/10.1016/0031-8914(59)90006-0. URL: http://www.sciencedirect.com/science/article/pii/0031891459900060

  20. Tremblay JC (2013) A unifying model for non-adiabatic coupling at metallic surfaces beyond the local harmonic approximation: from vibrational relaxation to scanning tunneling microscopy. J Chem Phys 138(24):244106. doi:http://dx.doi.org/10.1063/1.4811150. URL: http://scitation.aip.org/content/aip/journal/jcp/138/24/10.1063/1.4811150

  21. Jewell AD, Peng G, Mattera MFG, Lewis EA, Murphy CJ, Kyriakou G, Mavrikakis M, Sykes ECH (2012) Quantum tunneling enabled self-assembly of hydrogen atoms on Cu(111). ACS Nano 6(11):10115–10121. doi:10.1021/nn3038463. URL: http://pubs.acs.org/doi/abs/10.1021/nn3038463

  22. Firmino T, Marquardt R, Gatti F, Dong W (2014) Diffusion Rates for Hydrogen on Pd(111) from Molecular Quantum Dynamics Calculations. J Phys Chem Lett 5(24):4270–4274 doi:10.1021/jz502251w

Download references

Acknowledgments

This work was carried out within a research program from the Agence Nationale de la Recherce (project ANR 2010 BLAN 720 1). We thank ANR for the generous financial support, as well as CNRS and Université de Strasbourg.

Note: Since the submission of this manuscript, the diffusion rate for the H/Pd(111) system has been calculated from the DSF with in a realistic model and no adjustable parameters. These results have been published recently [22].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Marquardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Firmino, T., Marquardt, R., Gatti, F., Zanuttini, D., Dong, W. (2015). Full Quantum Calculations of the Diffusion Rate of Adsorbates. In: Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Frontiers in Quantum Methods and Applications in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14397-2_11

Download citation

Publish with us

Policies and ethics