Skip to main content

Defects in Metal Oxide Nanoparticle Powders

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

Metal oxides are mainly used in powder or particulate form for their application as functional materials . Insights into functional as well as unwanted properties of different defect types ranging from oxygen vacancies to grain boundaries and pores require an integrated characterization approach and are extremely difficult to establish. After a brief introduction into the complexity of particle systems and related heterogeneities, we discuss examples where for defects and other distinct structural features of MgO or TiO2 particle systems firm structure-property relationships have been established. Moreover, we want to point out that processing of particle matters. Related microstructural changes can induce the formation of solid-solid interfaces upon transformation of nanoparticle powders into mesoporous nanoparticle networks. This change in aggregation level and microstructure can substantially modify the electronic, optical and spectroscopic properties of metal oxide nanoparticle ensembles and, for this reason, plays a critical role for the generation of structural and—at the same time—functional defects inside particle ensembles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006)

    ADS  Google Scholar 

  2. K. Al-Shamery, A. Al-Shemmary, R. Buchwald, D. Hoogestraat, M. Kampling, P. Nickut, A. Wille, Elementary processes at nanoparticulate photocatalysts. Eur. Phys. J. B 75, 107–114 (2010)

    ADS  Google Scholar 

  3. A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1, 18–52 (2000)

    Google Scholar 

  4. Y. Long, M. Yu, B. Sun, C. Gu, Z. Fan, Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 41, 4560–4580 (2012)

    Google Scholar 

  5. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010)

    Google Scholar 

  6. K. Singh, J. Nowotny, V. Thangadurai, Amphoteric oxide semiconductors for energy conversion devices: a tutorial review. Chem. Soc. Rev. 42, 1961–1972 (2013)

    Google Scholar 

  7. M. Rhodes, Introduction to Particle Technology, 2nd edn. (Wiley, Chichester, 2008)

    Google Scholar 

  8. H.G. Merkus, Particle Size Measurements: Fundamentals, Practice, Quality (Springer, Dordrecht, 2009)

    Google Scholar 

  9. M. Stiess, Mechanische Verfahrenstechnik, 3rd edn. (Springer, Berlin, 2009)

    Google Scholar 

  10. R.J.D. Tilley, Defects in Solids (Wiley, Hoboken, 2008)

    Google Scholar 

  11. A.R. Gheisi, C. Neygandhi, A.K. Sternig, E. Carrasco, H. Marbach, D. Thomele, O. Diwald, O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles. Phys. Chem. Chem. Phys. 16, 23922-23929 (2014)

    Google Scholar 

  12. R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)

    Google Scholar 

  13. A. Feldhoff, C. Mendive, T. Bredow, D. Bahnemann, Direct measurement of size, three-dimensional shape, and specific surface area of anatase nanocrystals. ChemPhysChem 8, 805–809 (2007)

    Google Scholar 

  14. P. Geysermans, F. Finocchi, J. Goniakowski, R. Hacquart, J. Jupille, Combination of (100), (110) and (111) facets in MgO crystals shapes from dry to wet environment. Phys. Chem. Chem. Phys. 11, 2228–2233 (2009)

    Google Scholar 

  15. W. Piskorz, J. Gryboś, F. Zasada, P. Zapała, S. Cristol, J. Paul, Z. Sojka, Periodic DFT study of the tetragonal ZrO2 nanocrystals: equilibrium morphology modeling and atomistic surface hydration thermodynamics. J. Phys. Chem. C 116, 19307–19320 (2012)

    Google Scholar 

  16. F. Zasada, W. Piskorz, S. Cristol, J. Paul, A. Kotarba, Z. Sojka, Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: molecular interpretation of water adsorption equilibria. J. Phys. Chem. C 114, 22245–22253 (2010)

    Google Scholar 

  17. C. Weidenthaler, Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale 3, 792–810 (2011)

    ADS  Google Scholar 

  18. G. Pacchioni, H.-J. Freund, Electron transfer at oxide surfaces. The MgO paradigm: from defects to ultrathin films. Chem. Rev. 113, 4035–4072 (2013)

    Google Scholar 

  19. H.L. Tuller, S.R. Bishop, Point defects in oxides: tailoring materials through defect engineering. Ann. Rev. Mater. Res. 41, 369–398 (2011)

    ADS  Google Scholar 

  20. F. Agullo-Lopez, C.R.A. Catlow, P.D. Townsend, Point Defects in Materials (Academic Press, New York, 1988)

    Google Scholar 

  21. A.L. Shluger, J.L. Gavartin, M.A. Szymanski, A.M. Stoneham, Atomistic modelling of radiation effects: towards dynamics of exciton relaxation. Nucl. Instrum. Meth. B 166, 1–12 (2000)

    ADS  Google Scholar 

  22. A.L. Shluger, K.P. McKenna (Eds.), Models of Oxygen Vacancy Defects Involved in Degradation of Gate Dielectrics. IEEE Int. Reliab. Phys. 5A.1.1-5A.1.9 (2013)

    Google Scholar 

  23. J. Maier, Festkörper-Fehler und Funktion: Prinzipien der physikalischen Festkörperchemie. Teubner Studienbücher Chemie, Stuttgart (2000). ISBN: 9783519035404

    Google Scholar 

  24. E.G. Seebauer, M.C. Kratzer, Charged point defects in semiconductors. Mater. Sci. Eng. R 55, 57–149 (2006)

    Google Scholar 

  25. D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals. Science 319, 1776–1779 (2008)

    ADS  Google Scholar 

  26. C. Di Valentin, E. Finazzia, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, N-doped TiO2: theory and experiment. Chem. Phys. 339, 44–56 (2007)

    ADS  Google Scholar 

  27. W. Suëtaka, Surface Infrared and Raman Spectroscopy: Methods and Applications (Springer, Boston, 1995)

    Google Scholar 

  28. M. D’Arienzo, N. Siedl, A. Sternig, R. Scotti, F. Morazzoni, J. Bernardi, O. Diwald, Solar light and dopant-induced recombination effects: photoactive nitrogen in TiO2 as a case study. J. Phys. Chem. C 114, 18067–18072 (2010)

    Google Scholar 

  29. F. Meng, S.A. Morin, A. Forticaux, S. Jin, Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 46, 1616–1626 (2013)

    Google Scholar 

  30. K.P. McKenna, Electronic and chemical properties of a surface-terminated screw dislocation in MgO. J. Am. Chem. Soc. 135, 18859–18865 (2013)

    Google Scholar 

  31. H.L. Tuller, S.J. Litzelman, W. Jung, Micro-ionics: next generation power sources. Phys. Chem. Chem. Phys. 11, 3023–3034 (2009)

    Google Scholar 

  32. K. Kern, J. Maier, Nanoionics and nanoelectronics. Adv. Mater. 21, 2569 (2009)

    Google Scholar 

  33. K.P. McKenna, A.L. Shluger, Electron-trapping polycrystalline materials with negative electron affinity. Nat. Mater. 7, 859–862 (2008)

    ADS  Google Scholar 

  34. J. An, J.S. Park, A.L. Koh, H.B. Lee, H.J. Jung, J. Schoonman, R. Sinclair, T.M. Gür, F.B. Prinz, Atomic scale verification of oxide-ion vacancy distribution near a single grain boundary in YSZ. Sci. Rep. 3, 2680 (2013)

    ADS  Google Scholar 

  35. R.W. Siegel, What do we really know about the atomic-scale structures of nanophase materials? J. Phys. Chem. Solids 55, 1097–1106 (1994)

    ADS  Google Scholar 

  36. R. Richards, W. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker, K.J. Klabunde, Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J. Am. Chem. Soc. 122, 4921–4925 (2000)

    Google Scholar 

  37. S. Kim, X. Wang, C. Buda, M. Neurock, O.B. Koper, J.T. Yates Jr., IR spectroscopic measurement of diffusion kinetics of chemisorbed pyridine through nanocrystalline MgO particles. The involvement of surface defect sites in slow diffusion. J. Phys. Chem. C 113, 2219–2227 (2009)

    Google Scholar 

  38. X. Wang, S. Kim, C. Buda, M. Neurock, O.B. Koper, J.T. Yates Jr., Direct spectroscopic observation of the role of humidity in surface diffusion through an ionic adsorbent powder. The behavior of adsorbed pyridine on nanocrystalline MgO. J. Phys. Chem. C 113, 2228–2234 (2009)

    Google Scholar 

  39. S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004)

    Google Scholar 

  40. J.B. Goodenough, Oxide-ion electrolytes. Ann. Rev. Mat. Res. 33, 91–128 (2003)

    ADS  Google Scholar 

  41. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

    ADS  Google Scholar 

  42. J. Maier, Thermodynamics of nanosystems with a special view to charge carriers. Adv. Mater. 21, 2571–2585 (2009)

    ADS  Google Scholar 

  43. T. Bak, J. Nowotny, N.J. Sucher, E. Wachsman, Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (Rutile) with oxygen, water, and bacteria. J. Phys. Chem. C 115, 15711–15738 (2011)

    Google Scholar 

  44. A. Gurlo, R. Riedel, In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angew. Chem. Int. Ed. 46, 3826–3848 (2007)

    Google Scholar 

  45. C. Mercado, Z. Seeley, A. Bandyopadhyay, S. Bose, J.L. McHale, Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing. ACS Appl. Mat. Interf. 3, 2281–2288 (2011)

    Google Scholar 

  46. M. Batzill, U. Diebold, The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005)

    ADS  Google Scholar 

  47. C. Wöll, The chemistry and physics of zinc oxide surfaces. Prog. Surf. Sci. 82, 55–120 (2007)

    ADS  Google Scholar 

  48. H. Noei, H. Qiu, Y. Wang, M. Muhler, C. Wöll, Hydrogen loading of oxide powder particles: a transmission IR study for the case of zinc oxide. ChemPhysChem 11, 3604–3607 (2010)

    Google Scholar 

  49. J. Ederth, P. Heszler, A. Hultåker, G.A. Niklasson, C.G. Granqvist, Indium tin oxide films made from nanoparticles: models for the optical and electrical properties. Thin Solid Films 445, 199–206 (2003)

    ADS  Google Scholar 

  50. G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, A. Prodi-Schwab, Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties. J. Appl. Phys. 104, 034501 (2008)

    ADS  Google Scholar 

  51. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)

    ADS  Google Scholar 

  52. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    ADS  Google Scholar 

  53. A. Teleki, S.E. Pratsinis, Blue nano titania made in diffusion flames. Phys. Chem. Chem. Phys. 11, 3742–3747 (2009)

    Google Scholar 

  54. P.M. Kowalski, B. Meyer, D. Marx, Composition, structure, and stability of the rutile TiO2(110) surface: oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys. Rev. B 79, 115410 (2009)

    Google Scholar 

  55. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    ADS  Google Scholar 

  56. E. Finazzi, C.D. Valentin, G. Pacchioni, Nature of Ti interstitials in reduced bulk anatase and rutile TiO2. J. Phys. Chem. C 113, 3382–3385 (2009)

    Google Scholar 

  57. M.G. Blanchin, Transmission electron microscope study of defect structures accommodating non-stoichiometry in rutile. Key Eng. Mat. 155–1, 359–382 (1998)

    Google Scholar 

  58. D.J. Wallis, N.D. Browning, P.D. Nellist, S.J. Pennycook, I. Majid, Y. Liu, J.B. Vander Sande, Atomic structure of a 36.8 (210) tilt grain boundary in TiO2. J. Am. Ceram. Soc. 80, 499–502 (1997)

    Google Scholar 

  59. R.A. Bennett, S. Poulston, P. Stone, M. Bowker, STM and LEED observations of the surface structure of TiO2(110) following crystallographic shear plane formation. Phys. Rev. B 59, 10341–10346 (1999)

    ADS  Google Scholar 

  60. M.J. Elser, O. Diwald, Facilitated lattice oxygen depletion in consolidated TiO2 nanocrystal ensembles: a quantitative spectroscopic O2 adsorption study. J. Phys. Chem. C 116, 2896–2903 (2012)

    Google Scholar 

  61. R. Merkle, J. Maier, How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew. Chem. Int. Ed. 47, 3874–3894 (2008)

    Google Scholar 

  62. P. Knauth, H.L. Tuller, Solute segregation, electrical properties and defect thermodynamics of nanocrystalline TiO2 and CeO2. Solid State Ionics 136–137, 1215–1224 (2000)

    Google Scholar 

  63. J.L.M. Rupp, A. Infortuna, L.J. Gauckler, Thermodynamic stability of gadolinia-doped ceria thin film electrolytes for micro-solid oxide fuel cells. J. Am. Ceram. Soc. 90, 1792–1797 (2007)

    Google Scholar 

  64. S. Bhatia, B.W. Sheldon, Compositional stresses in polycrystalline titania films. J. Am. Ceram. Soc. 91, 3986–3993 (2008)

    Google Scholar 

  65. N. Siedl, P. Gügel, O. Diwald, Synthesis and aggregation of In2O3 nanoparticles: impact of process parameters on stoichiometry changes and optical properties. Langmuir 29, 6077–6083 (2013)

    Google Scholar 

  66. K.P. McKenna, P.V. Sushko, A.L. Shluger, Inside powders: a theoretical model of interfaces between MgO nanocrystallites. J. Am. Chem. Soc. 129, 8600–8608 (2007)

    Google Scholar 

  67. K.P. McKenna, D. Koller, A. Sternig, N. Siedl, N. Govind, P.V. Sushko, O. Diwald, Optical properties of nanocrystal interfaces in compressed MgO nanopowders. ACS Nano 5, 3003–3009 (2011)

    Google Scholar 

  68. S.O. Baumann, M.J. Elser, M. Auer, J. Bernardi, N. Hüsing, O. Diwald, Solid-solid interface formation in TiO2 nanoparticle networks. Langmuir 27, 1946–1953 (2011)

    Google Scholar 

  69. M. Bowker, Resolving catalytic phenomena with scanning tunnelling microscopy. Phys. Chem. Chem. Phys. 9, 3514–3521 (2007)

    Google Scholar 

  70. S.J. Tauster, Strong metal-support interactions. Acc. Chem. Res. 20, 389–394 (1987)

    Google Scholar 

  71. G. Wang, Y. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4, 6682–6691 (2012)

    ADS  Google Scholar 

  72. J. Idígoras, T. Berger, J.A. Anta, Modification of mesoporous TiO2 films by electrochemical doping: impact on photoelectrocatalytic and photovoltaic performance. J. Phys. Chem. C 117, 1561–1570 (2013)

    Google Scholar 

  73. B.H. Meekins, P.V. Kamat, Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 3, 3437–3446 (2009)

    Google Scholar 

  74. D.R. Baer, M.H. Engelhard, G.E. Johnson, J. Laskin, J. Lai, K. Mueller, P. Munusamy, S. Thevuthasan, H. Wang, N. Washton, A. Elder, B.L. Baisch, A. Karakoti, Kuchibhatla, V.N.T. Satyanarayana, D. Moon, Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J. Vac. Sci. Technol. A 31, 50820 (2013)

    Google Scholar 

  75. G. Kortüm, Reflexionsspektroskopie. Grundlagen, Methodik, Anwendungen (Springer, New York, 1969)

    Google Scholar 

  76. R.A. Schoonheydt, UV-VIS-NIR Spectroscopy and Microscopy of Heterogeneous Catalysts. Chem. Soc. Rev. 39, 5051 (2010)

    Google Scholar 

  77. F.C. Jentoft, Ultraviolet–visible–near infrared spectroscopy in catalysis: theory, experiment, analysis, and application under reaction conditions. Adv. Catal. 52, 129–211 (2009)

    Google Scholar 

  78. E. Garrone, A. Zecchina, F.S. Stone, An experimental and theoretical evaluation of surface states in MgO and other alkaline earth oxides. Philos. Mag. B 42, 683–703 (1980)

    ADS  Google Scholar 

  79. T. Berger, M. Sterrer, O. Diwald, E. Knözinger, The color of the MgO surface—a UV/vis diffuse reflectance investigation of electron traps. J. Phys. Chem. B 108, 7280–7285 (2004)

    Google Scholar 

  80. S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, J. Bernardi, Size-dependent optical properties of MgO nanocubes. Angew. Chem. Int. Ed. 44, 4917–4920 (2005)

    Google Scholar 

  81. B. O’Regan, M. Grätzel, D. Fitzmaurice, Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode. Chem. Phys. Lett. 183, 89–93 (1991)

    ADS  Google Scholar 

  82. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. 2006 (Springer, New York, 2010)

    Google Scholar 

  83. M. Anpo, S. Dzwigaj, M. Che, Applications of photoluminescence spectroscopy to the investigation of oxide-containing catalysts in the working state. Adv. Catal. 52, 1–42 (2009)

    Google Scholar 

  84. T.H. Gfroerer, in Photoluminescence in Analysis of Surfaces and Interfaces,ed. by R.A. Meyers. Encyclopedia of Analytical Chemistry (Wiley, Chichester, 2006)

    Google Scholar 

  85. S. Coluccia, A.M. Deane, A.J. Tench, Photoluminescent spectra of surface states in alkaline earth oxides. J. Chem. Soc. Farad. T 1 74, 2913–2922 (1978)

    Google Scholar 

  86. C.C. Mercado, F.J. Knorr, J.L. McHale, S.M. Usmani, A.S. Ichimura, L.V. Saraf, Location of hole and electron traps on nanocrystalline anatase TiO2. J. Phys. Chem. C 116, 10796–10804 (2012)

    Google Scholar 

  87. F.J. Knorr, J.L. McHale, Spectroelectrochemical photoluminescence of trap states of nanocrystalline TiO2 in aqueous media. J. Phys. Chem. C 117, 13654–13662 (2013)

    Google Scholar 

  88. G. Gouadec, P. Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Ch. 53, 1–56 (2007)

    Google Scholar 

  89. H. Knözinger, G. Mestl, Laser Raman spectroscopy—a powerful tool for in situ studies of catalytic materials. Top. Catal. 8, 45–55 (1999)

    Google Scholar 

  90. F. Thibault-Starzyk, F. Maug, Characterization of Solid Materials and Heterogeneous Catalysts (Wiley-VCH, Weinheim, 2012)

    Google Scholar 

  91. H. Noei, L. Jin, H. Qiu, M. Xu, Y. Gao, J. Zhao, M. Kauer, C. Wöll, M. Muhler, Y. Wang, Vibrational spectroscopic studies on pure and metal-covered metal oxide surfaces. Phys. Status Solidi B 250, 1204–1221 (2013)

    ADS  Google Scholar 

  92. G. Spoto, E.N. Gribov, G. Ricchiardi, A. Damin, D. Scarano, S. Bordiga, C. Lamberti, A. Zecchina, Carbon monoxide MgO from dispersed solids to single crystals: a review and new advances. Prog. Surf. Sci. 76, 71–146 (2004)

    ADS  Google Scholar 

  93. O. Diwald, P. Hofmann, E. Knözinger, H2 chemisorption and consecutive UV stimulated surface reactions on nanostructured MgO. Phys. Chem. Chem. Phys. 1, 713–721 (1999)

    Google Scholar 

  94. S.H. Szczepankiewicz, A.J. Colussi, M.R. Hoffmann, Infrared spectra of photoinduced species on hydroxylated titania surfaces. J. Phys. Chem. B 104, 9842–9850 (2000)

    Google Scholar 

  95. S.H. Szczepankiewicz, J.A. Moss, M.R. Hoffmann, Slow surface charge trapping kinetics on irradiated TiO2. J. Phys. Chem. B 106, 2922–2927 (2002)

    Google Scholar 

  96. D.A. Panayotov, J.T.J.R. Yates, n-type doping of TiO2 with atomic hydrogen-observation of the production of conduction band electrons by infrared spectroscopy. Chem. Phys. Lett. 436, 204–208 (2007)

    ADS  Google Scholar 

  97. T. Berger, M. Sterrer, O. Diwald, E. Knözinger, D. Panayotov, T.L. Thompson, J.T. Yates Jr., Light-induced charge separation in anatase TiO2 particles. J. Phys. Chem. B 109, 6061–6068 (2005)

    Google Scholar 

  98. D.S. Warren, Y. Shapira, H. Kisch, A.J. McQuillan, Apparent semiconductor type reversal in anatase TiO2 nanocrystalline films. J. Phys. Chem. C 111, 14286–14289 (2007)

    Google Scholar 

  99. T. Berger, J.A. Anta, V. Morales-Flórez, Electrons in the band gap: spectroscopic characterization of anatase TiO2 nanocrystal electrodes under fermi level control. J. Phys. Chem. C 116, 11444–11455 (2012)

    Google Scholar 

  100. J.M. Spaeth, Structural Analysis of Point Defects in Solids: An Introduction to Multiple Magnetic Resonance (Springer, Berlin 2012)

    Google Scholar 

  101. M. Brustolon, E. Giamello, Electron Paramagnetic Resonance: A Practitioner’s Toolkit (Wiley, Hoboken, 2009)

    Google Scholar 

  102. M. Chiesa, E. Giamello, M. Che, EPR characterization and reactivity of surface-localized inorganic radicals and radical ions. Chem. Rev. 110, 1320–1347 (2010)

    Google Scholar 

  103. A. Brückner, Electron paramagnetic resonance: a powerful tool for monitoring working catalysts. Adv. Catal. 51, 265–308 (2007)

    Google Scholar 

  104. S. van Doorslaer, D.M. Murphy, EPR spectroscopy in catalysis. Top. Curr. Chem. 321, 1–40 (2012)

    Google Scholar 

  105. J. McGregor, Solid-state NMR of oxidation catalysts, in Metal Oxide Catalysis, ed. by S.D. Jackson, J.S.J. Hargreaves (Wiley-VCH, Weinheim, 2008), pp. 195–242

    Google Scholar 

  106. M. Hunger, W. Wang, in Solid-State NMR Spectroscopy, ed. by G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp. Handbook of Heterogeneous Catalysis (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  107. T.J. Bastow, P.J. Dirken, M.E. Smith, H.J. Whitfield, Factors controlling the 17O NMR chemical shift in ionic mixed metal oxides. J. Phys. Chem. 100, 18539–18545 (1996)

    Google Scholar 

  108. P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics. J. Phys. Condens. Mat. 15, R1257 (2003)

    ADS  Google Scholar 

  109. F. de Groot, High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001)

    Google Scholar 

  110. J.W. Niemantsverdriet, Spectroscopy in Catalysis: An Introduction, 3rd edn. (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  111. D.E. Keller, S.M.K. Airaksinen, A.O. Krause, B.M. Weckhuysen, D.C. Koningsberger, Atomic XAFS as a tool to probe the reactivity of metal oxide catalysts: quantifying metal oxide support effects. J. Am. Chem. Soc. 129, 3189–3197 (2007)

    Google Scholar 

  112. G.B. González, Investigating the defect structures in transparent conducting oxides using X-ray and neutron scattering techniques. Materials 5, 818–850 (2012)

    ADS  Google Scholar 

  113. S.L.P. Savin, A.V. Chadwick, L.A. O’Dell, M.E. Smith, Structural studies of nanocrystalline oxides. Solid State Ionics 177, 2519–2526 (2006)

    Google Scholar 

  114. V. Luca, Comparison of size-dependent structural and electronic properties of anatase and rutile nanoparticles. J. Phys. Chem. C 113, 6367–6380 (2009)

    Google Scholar 

  115. D. Briggs, M.P. Seah, Auger and X-ray Photoelectron Spectroscopy, 2nd edn. (Wiley, Chichester, 1994)

    Google Scholar 

  116. G. Moretti, X-ray photoelectron and Auger electron spectroscopy, in Handbook of Heterogeneous Catalysis, ed. by G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  117. W.K. Chan, W.J.H. Borghols, F.M. Mulder, Direct observation of space charge induced hydrogen ion insertion in nanoscale anatase TiO2. Chem. Commun. 47, 6342–6344 (2008)

    Google Scholar 

  118. C.S. Kumar, Transmission Electron Microscopy Characterization of Nanomaterials (Springer, Berlin, 2014)

    Google Scholar 

  119. D.B. Williams, C.B. Carter, J.C.H. Spence, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009)

    Google Scholar 

  120. A.I. Kuznetsov, O. Kameneva, A. Alexandrov, N. Bityurin, P. Marteau, K. Chhor, C. Sanchez, A. Kanaev, Light-induced charge separation and storage in titanium oxide gels. Phys. Rev. E 71, 021403 (2005)

    ADS  Google Scholar 

  121. D.A. Panayotov, J.T. Yates Jr., Spectroscopic detection of hydrogen atom spillover from Au nanoparticles supported on TiO2: use of conduction band electrons. J. Phys. Chem. C 111, 2959–2964 (2007)

    Google Scholar 

  122. A. Safrany, R. Gao, J. Rabani, Optical properties and reactions of radiation induced TiO2 electrons in aqueous colloid solutions. J. Phys. Chem. B 104, 5848–5853 (2000)

    Google Scholar 

  123. L.A. Lyon, J.T. Hupp, Energetics of the nanocrystalline titanium dioxide/aqueous solution interface: approximate conduction band edge variations between H0 = −10 and H = +26. J. Phys. Chem. B 103, 4623–4628 (1999)

    Google Scholar 

  124. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E.M. Barea, E. Palomares, A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg. Chim. Acta 361, 684–698 (2008)

    Google Scholar 

  125. L. Mino, G. Spoto, S. Bordiga, A. Zecchina, Particles morphology and surface properties as investigated by HRTEM, FTIR, and periodic DFT calculations: from pyrogenic TiO2(P25) to nanoanatase. J. Phys. Chem. C 116, 17008–17018 (2012)

    Google Scholar 

  126. D.A. Panayotov, J.T. Yates Jr., Depletion of conduction band electrons in TiO2 by water chemisorption—IR spectroscopic studies of the independence of Ti-OH frequencies on electron concentration. Chem. Phys. Lett. 410, 11–17 (2005)

    ADS  Google Scholar 

  127. A.J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Copéret, L. Emsley, Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46, 1942–1951 (2013)

    Google Scholar 

  128. Related to the overall signal intensity the polarization for unpaired electrons is approximately three orders of magnitude higher than that obtained from nuclei with a magnetic moment due to the smaller mass—therefore, higher gyromagnetic ratio—of the electron and is responsible for the higher sensitivity

    Google Scholar 

  129. V. Krishnan, M.P. Feth, E. Wendel, Y. Chen, M. Hanack, H. Bertagnolli, EXAFS spectroscopy—fundamentals, measurement techniques, data evaluation and applications in the field of phthalocyanines. Z. Phys. Chem. 218, 1–15 (2004)

    Google Scholar 

  130. M. Fernández-García, A. Martínez-Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. Chem. Rev. 104, 4063–4104 (2004)

    Google Scholar 

  131. T. Nguyen, From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 5, 9455–9482 (2013)

    ADS  Google Scholar 

  132. Q. Kuang, X. Wang, Z. Jiang, Z. Xie, L. Zheng, High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications. Acc. Chem. Res. 47, 308–318 (2014)

    Google Scholar 

  133. L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003)

    ADS  Google Scholar 

  134. A. Testino, I.R. Bellobono, V. Buscaglia, C. Canevali, M. D’Arienzo, S. Polizzi, R. Scotti, F. Morazzoni, Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 129, 3564–3575 (2007)

    Google Scholar 

  135. J.U. Brehm, M. Winterer, H. Hahn, Synthesis and local structure of doped nanocrystalline zinc oxides. J. Appl. Phys. 100, 064311 (2006)

    ADS  Google Scholar 

  136. A.A. Gunawan, K.A. Mkhoyan, A.W. Wills, M.G. Thomas, D.J. Norris, Imaging “Invisible” dopant atoms in semiconductor nanocrystals. Nano Lett. 11, 5553–5557 (2011)

    ADS  Google Scholar 

  137. M. Bailly, G. Costentin, H. Lauron-Pernot, J.M. Krafft, M. Che, Physicochemical and in situ photoluminescence study of the reversible transformation of oxide ions of low coordination into hydroxyl groups upon interaction of water and methanol with MgO. J. Phys. Chem. B 109, 2404–2413 (2005)

    Google Scholar 

  138. C.A. Cadigan, A.R. Corpuz, F. Lin, C.M. Caskey, K.B.H. Finch, X. Wang, R.M. Richards, Nanoscale (111) faceted rock-salt metal oxides in catalysis. Catal. Sci. Technol. 3, 900 (2013)

    Google Scholar 

  139. H.R. Moon, J.J. Urban, D.J. Milliron, Size-controlled synthesis and optical properties of monodisperse colloidal magnesium oxide nanocrystals. Angew. Chem. Int. Ed. 48, 6278–6281 (2009)

    Google Scholar 

  140. M. Chiesa, P. Martino, E. Giamello, C. Di Valentin, A. Del Vitto, G. Pacchioni, Local environment of electrons trapped at the MgO surface: spin density on the oxygen ions from 17O hyperfine coupling constants. J. Phys. Chem. B 108, 11529–11534 (2004)

    Google Scholar 

  141. M. Chiesa, M.C. Paganini, E. Giamello, D.M. Murphy, C. Di Valentin, G. Pacchioni, Excess electrons stabilized on ionic oxide surfaces. Acc. Chem. Res. 39, 861–867 (2006)

    Google Scholar 

  142. M. Chiesa, M.C. Paganini, G. Spoto, E. Giamello, C.D. Valentin, A.D. Vitto, G. Pacchioni, Single electron traps at the surface of polycrystalline MgO: assignment of the main trapping sites. J. Phys. Chem. B 109, 7314–7322 (2005)

    Google Scholar 

  143. L. Marchese, S. Coluccia, G. Martra, A. Zecchina, Dynamic and static interactions in CO layers adsorbed on MgO smoke (100) facelets: a FTIR and HRTEM study. Surf. Sci. 269–270, 135–140 (1992)

    Google Scholar 

  144. R. Hacquart, J. Krafft, G. Costentin, J. Jupille, Evidence for emission and transfer of energy from excited edge sites of MgO smokes by photoluminescence experiments. Surf. Sci. 595, 172–182 (2005)

    ADS  Google Scholar 

  145. S. Stankic, J. Bernardi, O. Diwald, E. Knözinger, Optical surface properties and morphology of MgO and CaO nanocrystals. J. Phys. Chem. B 110, 13866–13871 (2006)

    Google Scholar 

  146. M. Sterrer, T. Berger, O. Diwald, E. Knözinger, P.V. Sushko, A.L. Shluger, Chemistry at corners and edges: generation and adsorption of H atoms on the surface of MgO nanocubes. J. Chem. Phys. 123, 064714 (2005)

    ADS  Google Scholar 

  147. G. Pinarello, C. Pisani, A. D’Ercole, M. Chiesa, M.C. Paganini, E. Giamello, O. Diwald, O radical ions on MgO as a tool to unravel structure and location of ionic vacancies at the surface of oxides: a coupled experimental and theoretical investigation. Surf. Sci. 494, 95–110 (2001)

    ADS  Google Scholar 

  148. M. Müller, S. Stankic, O. Diwald, E. Knözinger, P.V. Sushko, P.E. Trevisanutto, A.L. Shluger, Effect of protons on the optical properties of oxide nanostructures. J. Am. Chem. Soc. 129, 12491–12496 (2007)

    Google Scholar 

  149. P.V. Sushko, A.L. Shluger, Electronic structure of excited states at low-coordinated surface sites of MgO. Surf. Sci. 421, L157 (1999)

    ADS  Google Scholar 

  150. K.P. McKenna, A.L. Shluger, First-principles calculations of defects near a grain boundary in MgO. Phys. Rev. B 79, 224116 (2009)

    ADS  Google Scholar 

  151. S. Stankic, M. Cottura, D. Demaille, C. Noguera, J. Jupille, Nucleation and growth concepts applied to the formation of a stoichiometric compound in a gas phase: the case of MgO smoke. J. Cryst. Growth 329, 52–56 (2011)

    ADS  Google Scholar 

  152. A. Sternig, S. Stankic, M. Müller, N. Siedl, O. Diwald, Surface exciton separation in photoexcited MgO nanocube powders. Nanoscale 4, 7494–7500 (2012)

    ADS  Google Scholar 

  153. A. Sternig, M. Müller, M. McCallum, J. Bernardi, O. Diwald, BaO clusters on MgO nanocubes: a quantitative analysis of optical-powder properties. Small 6, 582–588 (2010)

    Google Scholar 

  154. C. Tegenkamp, H. Pfnür, W. Ernst, U. Malaske, J. Wollschläger, D. Peterka, K.M. Schröder, V. Zielasek, M. Henzler, Defects in epitaxial insulating thin films. J. Phys. Condens. Mat. 11, 9943–9954 (1999)

    ADS  Google Scholar 

  155. J. Kramer, W. Ernst, C. Tegenkamp, H. Pfnür, Mechanism and kinetics of color center formation on epitaxial thin films of MgO. Surf. Sci. 517, 87–97 (2002)

    ADS  Google Scholar 

  156. M. Sterrer, E. Fischbach, T. Risse, H. Freund, Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. Phys. Rev. Lett. 94, 186101 (2005)

    ADS  Google Scholar 

  157. M. Sterrer, E. Fischbach, M. Heyde, N. Nilius, H. Rust, T. Risse, H. Freund, Electron paramagnetic resonance and scanning tunneling microscopy investigations on the formation of F+ and F0 color centers on the surface of thin MgO(001) films. J. Phys. Chem. B 110, 8665–8669 (2006)

    Google Scholar 

  158. H.M. Benia, N. Nilius, H. Freund, Photon mapping of MgO thin films with an STM. Surf. Sci. 601, L55 (2007)

    ADS  Google Scholar 

  159. N. Nilius, Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf. Sci. Rep. 64, 595–659 (2009)

    ADS  Google Scholar 

  160. A. Sternig, D. Koller, N. Siedl, O. Diwald, K. McKenna, Exciton formation at solid-solid Interfaces: a systematic experimental and ab initio study on compressed MgO nanopowders. J. Phys. Chem. C 116, 10103–10112 (2012)

    Google Scholar 

  161. N. Siedl, D. Koller, A.K. Sternig, D. Thomele, O. Diwald, Photoluminescence quenching in compressed powders. Phys. Chem. Chem. Phys. 16, 8339–8345 (2014)

    Google Scholar 

  162. L. Jing, W. Zhou, G. Tian, H. Fu, Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 42, 9509–9549 (2013)

    Google Scholar 

  163. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)

    ADS  Google Scholar 

  164. A. Selloni, Crystal growth: anatase shows its reactive side. Nat. Mat. 7, 613–615 (2008)

    Google Scholar 

  165. Y. Luan, L. Jing, Y. Xie, X. Sun, Y. Feng, H. Fu, Exceptional photocatalytic activity of 001-facet-exposed TiO2 mainly depending on enhanced adsorbed oxygen by residual hydrogen fluoride. ACS Catal. 3, 1378–1385 (2013)

    Google Scholar 

  166. D.G. Calatayud, T. Jardiel, M. Peiteado, C.F. Rodríguez, M.R. Espino Estévez, J.M. Doña Rodríguez, F.J. Palomares, F. Rubio, D. Fernández-Hevia, A.C. Caballero, Highly photoactive anatase nanoparticles obtained using trifluoroacetic acid as an electron scavenger and morphological control agent. J. Mat. Chem. A 1, 14358–14367 (2013)

    Google Scholar 

  167. H. Kisch, Semiconductor photocatalysis—mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 52, 812–847 (2013)

    Google Scholar 

  168. D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 99, 398–406 (2010)

    Google Scholar 

  169. A. Riss, M.J. Elser, J. Bernardi, O. Diwald, Stability and photoelectronic properties of layered titanate nanostructures. J. Am. Chem. Soc. 131, 6198–6206 (2009)

    Google Scholar 

  170. C. Wang, C. Böttcher, D.W. Bahnemann, J.K. Dohrmann, A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J. Mater. Chem. 13, 2322–2329 (2003)

    Google Scholar 

  171. M. Che, J.C. Védrine, Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity (Wiley-VCH, Weinheim, 2012)

    Google Scholar 

  172. N. Siedl, M.J. Elser, J. Bernardi, O. Diwald, Functional interfaces in pure and blended oxide nanoparticle networks: recombination versus separation of photogenerated charges. J. Phys. Chem. C 113, 15792–15795 (2009)

    Google Scholar 

  173. M.J. Elser, T. Berger, D. Brandhuber, J. Bernardi, O. Diwald, E. Knözinger, Particles coming together: electron centers in adjoined TiO2 nanocrystals. J. Phys. Chem. B 110, 7605–7608 (2006)

    Google Scholar 

  174. R. Zhang, A.A. Elzatahry, S.S. Al-Deyab, D. Zhao, Mesoporous titania: from synthesis to application. Nano Today 7, 344–366 (2012)

    Google Scholar 

  175. T. Fröschl, U. Hörmann, P. Kubiak, G. Kučerová, M. Pfanzelt, C.K. Weiss, R.J. Behm, N. Hüsing, U. Kaiser, K. Landfester, M. Wohlfahrt-Mehrens, High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev. 41, 5313–5360 (2012)

    Google Scholar 

  176. T. Xia, N. Li, Y. Zhang, M.B. Kruger, J. Murowchick, A. Selloni, X. Chen, Directional heat dissipation across the interface in anatase-rutile nanocomposites. ACS Appl. Mater. Interf. 5, 9883–9890 (2013)

    Google Scholar 

  177. F. Nunzi, E. Mosconi, L. Storchi, E. Ronca, A. Selloni, M. Grätzel, F. de Angelis, Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering. Energy Environ. Sci. 6, 1221 (2013)

    Google Scholar 

  178. N. Siedl, S.O. Baumann, M.J. Elser, O. Diwald, Particle networks from powder mixtures: generation of TiO2-SnO2 heterojunctions via surface charge-induced heteroaggregation. J. Phys. Chem. C 116, 22967–22973 (2012)

    Google Scholar 

  179. N. Siedl, P. Gügel, O. Diwald, First combined electron paramagnetic resonance and FT-IR spectroscopic evidence for reversible O2 adsorption on In2O3−x nanoparticles. J. Phys. Chem. C 117, 20722–20729 (2013)

    Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung FWF-PI312 (ERA Chemistry). We also thank Dr. Nicolas Siedl for his help in the preparation of figures. We are particularly grateful for various fruitful discussions with Alexander L. Shluger, Peter V. Sushko and Keith McKenna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Diwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berger, T., Diwald, O. (2015). Defects in Metal Oxide Nanoparticle Powders. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_9

Download citation

Publish with us

Policies and ethics