Skip to main content

Noncontact AFM Imaging of Atomic Defects on the Rutile TiO2(110) Surface

  • Chapter
  • First Online:
Defects at Oxide Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

The atomic force microscope (AFM) operated in the noncontact mode (nc-AFM) offers a unique tool for real space, atomic-scale characterisation of point defects and molecules on surfaces, irrespective of the substrate being electrically conducting or non-conducting. The nc-AFM has therefore in recent years become an important tool for fundamental analysis of defects at the atomic scale on metal oxide systems. Here the principles of the nc-AFM technique are presented and I review the recent interplay between atom-resolved nc-AFM experiments and atomistic nc-AFM simulations of the predominant defects on the rutile TiO2(110) surface. The present Chapter continues the review of nc-AFM initiated in Chap. 7 by Barth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Reichling, C. Barth, Scanning force imaging of atomic size defects on the CaF2(111) surface. Phys. Rev. Lett. 83, 768–771 (1999)

    ADS  Google Scholar 

  2. C. Barth, M. Reichling, Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 414, 54–57 (2001)

    ADS  Google Scholar 

  3. S. Gritschneder, M. Reichling, Structural elements of CeO2(111) surfaces. Nanotechnology 18, 044025 (2007)

    ADS  Google Scholar 

  4. S. Torbrügge, M. Reichling, A. Ishiyama, S. Morita, O. Custance, Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). Phys. Rev. Lett. 99, 056101 (2007)

    ADS  Google Scholar 

  5. S. Gritschneder, M. Reichling, Atomic resolution Imaging on CeO2(111) with hydroxylated probes. J. Phys. Chem. C 112, 2045–2049 (2008)

    Google Scholar 

  6. F. Ostendorf, S. Torbrügge, M. Reichling, Atomic scale evidence for faceting stabilization of a polar oxide surface. Phys. Rev. B 77, 041405 (2008)

    ADS  Google Scholar 

  7. M.K. Rasmussen, K. Meinander, F. Besenbacher, J.V. Lauritsen, Non-contact atomic force microscopy study of the spinel MgAl2O4(111) surface. Beilstein J. Nanotechnol. 3, 192–197 (2012)

    Google Scholar 

  8. M.K. Rasmussen, A.S. Foster, B. Hinnemann, F.F. Canova, S. Helveg, K. Meinander, N.M. Martin, J. Knudsen, A. Vlad, E. Lundgren, A. Stierle, F. Besenbacher, J.V. Lauritsen, Stable cation inversion at the MgAl2O4(100) surface. Phys. Rev. Lett. 107, 036102 (2011)

    ADS  Google Scholar 

  9. J.V. Lauritsen, S. Porsgaard, M.K. Rasmussen, M.C.R. Jensen, R. Bechstein, K. Meinander, B.S. Clausen, S. Helveg, R. Wahl, G. Kresse, F. Besenbacher, Stabilization principles for polar surfaces of ZnO. ACS Nano 5, 5987–5994 (2011)

    Google Scholar 

  10. J.V. Lauritsen, M. Reichling, Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J. Phys.: Condens. Matter 22, 263001 (2010)

    ADS  Google Scholar 

  11. J.V. Lauritsen, M.C.R. Jensen, K. Venkataramani, B. Hinnemann, S. Helveg, B.S. Clausen, F. Besenbacher, Atomic-scale structure and stability of the √31 × √31R ± 9° surface of Al2O3(0001). Phys. Rev. Lett. 103, 076103 (2009)

    ADS  Google Scholar 

  12. M.C.R. Jensen, K. Venkataramani, S. Helveg, B.S. Clausen, M. Reichling, F. Besenbacher, J.V. Lauritsen, Morphology, dispersion, and stability of Cu nanoclusters on clean and hydroxylated α-Al2O3(0001) substrates. J. Phys. Chem. C 112, 16953–16960 (2008)

    Google Scholar 

  13. P. Eaton, P. West, Atomic Force Microscopy (OUP, Oxford, 2010)

    Google Scholar 

  14. M.P. Nikiforov, D.A. Bonnell, Scanning probe microscopy in materials science, in Science of Microscopy, ed. by P.W. Hawkes, J.C.H. Spence (Springer, New York, 2007), pp. 929–968

    Google Scholar 

  15. R. García, R. Pérez, Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    MATH  ADS  Google Scholar 

  16. F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    ADS  Google Scholar 

  17. S. Morita, F.J. Giessibl, R. Wiesendanger (eds.), Noncontact Atomic Force Microscopy. Nanoscience and Technology, vol. 2 (Springer, Berlin, 2009)

    Google Scholar 

  18. H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005)

    ADS  Google Scholar 

  19. V.J. Morris, A.P. Gunning, A.R. Kirby, Atomic force microscopy for biologists (Imperial College Press, London, 1999)

    Google Scholar 

  20. M. Amrein, Atomic force microscopy in the life sciences, in Science of Microscopy, ed. by P.W. Hawkes, J.C.H. Spence (Springer, New York, 2007), pp. 1025–1069

    Google Scholar 

  21. D.J. Muller, Y.F. Dufrene, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008)

    ADS  Google Scholar 

  22. S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy (Springer, New York, 2002)

    Google Scholar 

  23. T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, Frequency-modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991)

    ADS  Google Scholar 

  24. F.J. Giessibl, Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B: Condens. Matter 56, 16010–16015 (1997)

    ADS  Google Scholar 

  25. T. An, T. Eguchi, K. Akiyama, Y. Hasegawa, Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator. Appl. Phys. Lett. 88, 133114 (2006)

    Google Scholar 

  26. F.J. Giessibl, F. Pielmeier, T. Eguchi, T. An, Y. Hasegawa, Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 84, 15 (2011)

    Google Scholar 

  27. F.J. Giessibl, H. Bielefeldt, Physical interpretation of frequency-modulation atomic force microscopy. Phys. Rev. B 61, 9968–9971 (2000)

    ADS  Google Scholar 

  28. T. Fukuma, K. Kimura, K. Kobayashi, K. Matsushige, H. Yamada, Frequency-modulation atomic force microscopy at high cantilever resonance frequencies using the heterodyne optical beam deflection method. Rev. Sci. Instrum. 76, 126110 (2005)

    ADS  Google Scholar 

  29. B.W. Hoogenboom, P. Frederix, J.L. Yang, S. Martin, Y. Pellmont, M. Steinacher, S. Zach, E. Langenbach, H.J. Heimbeck, A Fabry-Perot interferometer for micrometer-sized cantilevers. Appl. Phys. Lett. 86, 074101 (2005)

    ADS  Google Scholar 

  30. T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87, 034101 (2005)

    ADS  Google Scholar 

  31. T. Fukuma, M.J. Higgins, S.P. Jarvis, Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. Phys. Rev. Lett. 98, 106101 (2007)

    ADS  Google Scholar 

  32. S. Rode, N. Oyabu, K. Kobayashi, H. Yamada, A. Kühnle, True atomic-resolution imaging of (10-14) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir 25, 2850–2853 (2009)

    Google Scholar 

  33. D.S. Wastl, A.J. Weymouth, F.J. Giessibl, Optimizing atomic resolution of force microscopy in ambient conditions. Phys. Rev. B 87, 245415 (2013)

    ADS  Google Scholar 

  34. J.E. Sader, S.P. Jarvis, Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004)

    ADS  Google Scholar 

  35. W.A. Hofer, A.S. Foster, A.L. Shluger, Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287–1331 (2003)

    ADS  Google Scholar 

  36. R. Hoffmann, L.N. Kantorovich, A. Baratoff, H.J. Hug, H.J. Güntherodt, Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys. Rev. Lett. 92, 146103 (2004)

    ADS  Google Scholar 

  37. R. Hoffmann, C. Barth, A.S. Foster, A.L. Shluger, H.J. Hug, H.J. Güntherodt, R.M. Nieminen, M. Reichling, Measuring site-specific cluster-surface bond formation. J. Am. Chem. Soc. 127, 17863–17866 (2005)

    Google Scholar 

  38. G. Teobaldi, K. Lammle, T. Trevethan, M. Watkins, A. Schwarz, R. Wiesendanger, A.L. Shluger, Chemical resolution at ionic crystal surfaces using dynamic atomic force microscopy with metallic tips. Phys. Rev. Lett. 106, 216102 (2011)

    ADS  Google Scholar 

  39. Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, O. Custance, Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007)

    ADS  Google Scholar 

  40. M.Z. Baykara, T.C. Schwendemann, E.I. Altman, U.D. Schwarz, Three-dimensional atomic force microscopy—taking surface imaging to the next level. Adv. Mater. 22, 2838–2853 (2010)

    Google Scholar 

  41. B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman, U.D. Schwarz, Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat. Nanotechnol. 4, 307–310 (2009)

    ADS  Google Scholar 

  42. T. Arai, M. Tomitori, Bias dependence of Si(111)-7 × 7 images observed by noncontact atomic force microscopy. Appl. Surf. Sci. 157, 207–211 (2000)

    ADS  Google Scholar 

  43. F.J. Giessibl, Theory for an electrostatic imaging mechanism allowing atomic resolution of ionic-crystals by atomic force microscopy. Phys. Rev. B 45, 13815–13818 (1992)

    ADS  Google Scholar 

  44. A.S. Foster, C. Barth, C.R. Henry, Chemical identification of ions in doped NaCl by scanning force microscopy. Phys. Rev. Lett. 102, 256103 (2009)

    ADS  Google Scholar 

  45. A.S. Foster, C. Barth, A.L. Shluger, M. Reichling, Unambiguous interpretation of atomically resolved force microscopy images of an insulator. Phys. Rev. Lett. 86, 2373–2376 (2001)

    ADS  Google Scholar 

  46. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)

    ADS  Google Scholar 

  47. C. Barth, A.S. Foster, M. Reichling, A.L. Shluger, Contrast formation in atomic resolution scanning force microscopy on CaF2(111): experiment and theory. J. Phys.: Condens. Matter 13, 2061–2079 (2001)

    ADS  Google Scholar 

  48. A.S. Foster, A.L. Shluger, R.M. Nieminen, Realistic model tips in simulations of nc-AFM. Nanotechnology 15, S60 (2004)

    ADS  Google Scholar 

  49. A.S. Foster, A.Y. Gal, J.M. Airaksinen, O.H. Pakarinen, Y.J. Lee, J.D. Gale, A.L. Shluger, R.M. Nieminen, Towards chemical identification in atomic-resolution noncontact AFM imaging with silicon tips. Phys. Rev. B 68, 195420 (2003)

    ADS  Google Scholar 

  50. A. Foster, W. Hofer, Scanning Probe Microscopes, Atomic Scale Engineering by Forces and Currents. Nanoscience and Technology (Springer, Berlin, 2005)

    Google Scholar 

  51. A. Yurtsever, D. Fernandez-Torre, C. Gonzalez, P. Jelinek, P. Pou, Y. Sugimoto, M. Abe, R. Perez, S. Morita, Understanding image contrast formation in TiO2 with force spectroscopy. Phys. Rev. B. 85, 125416 (2012)

    Google Scholar 

  52. J. Israelachvili, Intermolecular and Surface Forces, revised 3rd edn. (Academic Press, Amsterdam, 2011)

    Google Scholar 

  53. F. Besenbacher, J.V. Lauritsen, T.R. Linderoth, E. Lægsgaard, R.T. Vang, S. Wendt, Atomic-scale surface science phenomena studied by scanning tunneling microscopy. Surf. Sci. 603, 1315–1327 (2009)

    ADS  Google Scholar 

  54. U. Martinez, J.O. Hansen, E. Lira, H.H. Kristoffersen, P. Huo, R. Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer, S. Wendt, Reduced step edges on rutile TiO2(110) as competing defects to oxygen vacancies on the terraces and reactive sites for ethanol dissociation. Phys. Rev. Lett. 109, 155501 (2012)

    ADS  Google Scholar 

  55. J. Matthiesen, S. Wendt, J.O. Hansen, G.K.H. Madsen, E. Lira, P. Galliker, E.K. Vestergaard, R. Schaub, E. Lægsgaard, B. Hammer, F. Besenbacher, Observation of all the intermediate steps of a chemical reaction on an oxide surface by scanning tunneling microscopy. ACS Nano 3, 517–526 (2009)

    Google Scholar 

  56. S. Wendt, R. Schaub, J. Matthiesen, E. Vestergaard, E. Wahlström, M.D. Rasmussen, P. Thostrup, L.M. Molina, E. Lægsgaard, I. Stensgaard, B. Hammer, F. Besenbacher, Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf. Sci. 598, 226–245 (2005)

    ADS  Google Scholar 

  57. I.M. Brookes, C.A. Muryn, G. Thornton, Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87, 266103 (2001)

    ADS  Google Scholar 

  58. C.L. Pang, S.A. Haycock, H. Raza, P.W. Murray, G. Thornton, O. Gulseren, R. James, D.W. Bullett, Added row model of TiO2(110)1 × 2. Phys. Rev. B 58, 1586–1589 (1998)

    ADS  Google Scholar 

  59. Z. Zhang, Q. Ge, S.C. Li, B.D. Kay, J.M. White, Z. Dohnalek, Imaging intrinsic diffusion of bridge-bonded oxygen vacancies on TiO2(110). Phys. Rev. Lett. 99, 126105 (2007)

    Google Scholar 

  60. Z. Zhang, O. Bondarchuk, B.D. Kay, J.M. White, Z. Dohnalek, Imaging water dissociation on TiO2(110): evidence for inequivalent geminate OH groups. J. Phys. Chem. B 110, 21840–21845 (2006)

    Google Scholar 

  61. R. Lindsay, A. Wander, A. Ernst, B. Montanari, G. Thornton, N.M. Harrison, Revisiting the surface structure of TiO2(110): a quantitative low-energy electron diffraction study. Phys. Rev. Lett. 94, 246102 (2005)

    ADS  Google Scholar 

  62. S. Wendt, P.T. Sprunger, E. Lira, G.K.H. Madsen, Z.S. Li, J.O. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320, 1755–1759 (2008)

    ADS  Google Scholar 

  63. L.E. Walle, A. Borg, P. Uvdal, A. Sandell, Probing the influence from residual Ti interstitials on water adsorption on TiO2(110). Phys. Rev. B 86, 205415 (2012)

    ADS  Google Scholar 

  64. M.B. Hugenschmidt, L. Gamble, C.T. Campbell, The interaction of H2O with a TiO2(110) surface. Surf. Sci. 302, 329–340 (1994)

    ADS  Google Scholar 

  65. R.L. Kurtz, R. Stock-Bauer, T.E. Msdey, E. Román, J. De Segovia, Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf. Sci. 218, 178–200 (1989)

    ADS  Google Scholar 

  66. J. Matthiesen, J.O. Hansen, S. Wendt, E. Lira, R. Schaub, E. Lægsgaard, F. Besenbacher, B. Hammer, Formation and diffusion of water dimers on rutile TiO2(110). Phys. Rev. Lett. 102, 226101 (2009)

    Google Scholar 

  67. R. Schaub, R. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys. Rev. Lett. 87, 6104 (2001)

    Google Scholar 

  68. S. Wendt, J. Matthiesen, R. Schaub, E.K. Vestergaard, E. Lægsgaard, F. Besenbacher, B. Hammer, Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006)

    ADS  Google Scholar 

  69. R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science 299, 377–379 (2003)

    ADS  Google Scholar 

  70. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    ADS  Google Scholar 

  71. C.L. Pang, R. Lindsay, G. Thornton, Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem. Rev. 113, 3887–3948 (2013)

    Google Scholar 

  72. C.L. Pang, R. Lindsay, G. Thornton, Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328–2353 (2008)

    Google Scholar 

  73. M.A. Henderson, I. Lyubinetsky, Molecular-level Insights into photocatalysis from scanning probe microscopy studies on TiO2(110). Chem. Rev. 113, 4428–4455 (2013)

    Google Scholar 

  74. P.W. Tasker, The stability of ionic crystal surfaces. J. Phys. C: Solid State Phys. 12, 4977 (1979)

    ADS  Google Scholar 

  75. C. Noguera, Polar oxide surfaces. J. Phys.: Condens. Matter 12, R367–R410 (2000)

    ADS  Google Scholar 

  76. G. Cabailh, X. Torrelles, R. Lindsay, O. Bikondoa, I. Joumard, J. Zegenhagen, G. Thornton, Geometric structure of TiO2(110): achieving experimental consensus. Phys. Rev. B 75, 241403 (2007)

    ADS  Google Scholar 

  77. H. Onishi, Y. Iwasawa, Dynamic visualization of a metal-oxide-surface/gas-phase reaction: time-resolved observation by scanning tunneling microscopy at 800 K. Phys. Rev. Lett. 76, 791–794 (1996)

    ADS  Google Scholar 

  78. S. Takakusagi, K.-I. Fukui, F. Nariyuki, Y. Iwasawa, STM study on structures of two kinds of wide strands formed on TiO2(110). Surf. Sci. 523, L41–L46 (2003)

    ADS  Google Scholar 

  79. R. Bechstein, H.H. Kristoffersen, L.B. Vilhelmsen, F. Rieboldt, J. Stausholm-Møller, S. Wendt, B. Hammer, F. Besenbacher, Packing defects into ordered structures: strands on TiO2. Phys. Rev. Lett. 108, 236103 (2012)

    Google Scholar 

  80. M. Bowker, The surface structure of titania and the effect of reduction. Curr. Opin. Solid State Mater. Sci. 10, 153–162 (2006)

    ADS  Google Scholar 

  81. H.H. Pieper, K. Venkataramani, S. Torbrügge, S. Bahr, J.V. Lauritsen, F. Besenbacher, A. Kühnle, M. Reichling, Unravelling the atomic structure of cross-linked (1 × 2)-TiO2(110). Phys. Chem. Chem. Phys. 12, 12436–12441 (2011)

    Google Scholar 

  82. C.M. Yim, C.L. Pang, G. Thornton, Oxygen vacancy origin of the surface band-gap state of TiO2(110). Phys. Rev. Lett. 104, 036806 (2010)

    ADS  Google Scholar 

  83. P. Krüger, J. Jupille, S. Bourgeois, B. Domenichini, A. Verdini, L. Floreano, A. Morgante, Intrinsic nature of the excess electron distribution at the TiO2(110) surface. Phys. Rev. Lett. 108, 126803 (2012)

    ADS  Google Scholar 

  84. K. Mitsuhara, H. Okumura, A. Visikovskiy, M. Takizawa, Y. Kido, The source of the Ti 3d defect state in the band gap of rutile titania (110) surfaces. J. Chem. Phys. 136, 124303 (2012)

    Google Scholar 

  85. E. Lira, S. Wendt, P.P. Huo, J.O. Hansen, R. Streber, S. Porsgaard, Y.Y. Wei, R. Bechstein, E. Lægsgaard, F. Besenbacher, The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J. Am. Chem. Soc. 133, 6529–6532 (2011)

    Google Scholar 

  86. O. Bikondoa, C.L. Pang, R. Ithnin, C.A. Muryn, H. Onishi, G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189–192 (2006)

    ADS  Google Scholar 

  87. S.-C. Li, Z. Zhang, D. Sheppard, B.D. Kay, J.M. White, Y. Du, I. Lyubinetsky, G. Henkelman, Z. Dohnálek, Intrinsic diffusion of hydrogen on rutile TiO2(110). J. Am. Chem. Soc. 130, 9080–9088 (2008)

    Google Scholar 

  88. H.H. Kristoffersen, J.O. Hansen, U. Martinez, Y.Y. Wei, J. Matthiesen, R. Streber, R. Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer, S. Wendt, Role of steps in the dissociative adsorption of water on rutile TiO2(110). Phys. Rev. Lett. 110, 146101 (2013)

    Google Scholar 

  89. M.A. Henderson, An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption. Surf. Sci. 355, 151–166 (1996)

    ADS  Google Scholar 

  90. M.A. Henderson, The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 5–308 (2002)

    ADS  Google Scholar 

  91. K.-I. Fukui, H. Onishi, Y. Iwasawa, Imaging of atomic-scale structure of oxide surfaces and adsorbed molecules by noncontact atomic force microscopy. Appl. Surf. Sci. 140, 259–264 (1999)

    ADS  Google Scholar 

  92. M. Ashino, T. Uchihashi, K. Yokoyama, Y. Sugawara, S. Morita, M. Ishikawa, STM and atomic-resolution noncontact AFM of an oxygen-deficient TiO2(110) surface. Phys. Rev. B 61, 13955–13959 (2000)

    ADS  Google Scholar 

  93. M. Ashino, Y. Sugawara, S. Morita, M. Ishikawa, Atomic resolution noncontact atomic force and scanning tunneling microscopy of TiO2(110)-(1 × 1) and -(1 × 2): Simultaneous imaging of surface structures and electronic states. Phys. Rev. Lett. 86, 4334–4337 (2001)

    ADS  Google Scholar 

  94. C.L. Pang, H. Raza, S.A. Haycock, G. Thornton, Imaging reconstructed TiO2 surfaces with non-contact atomic force microscopy. Appl. Surf. Sci. 157, 233–238 (2000)

    ADS  Google Scholar 

  95. K.I. Fukui, Y. Iwasawa, Atoms and molecules on TiO2(110) and CeO2(111), in Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, New York, 2002), pp. 167–181

    Google Scholar 

  96. S.H. Ke, T. Uda, K. Terakura, STM-AFM image formation on TiO2(110) 1 × 1 and 1 × 2 surfaces. Appl. Surf. Sci. 188, 319–324 (2002)

    ADS  Google Scholar 

  97. J.V. Lauritsen, A.S. Foster, G.H. Olesen, M.C. Christensen, A. Kühnle, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, M. Reichling, F. Besenbacher, Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology 17, 3436–3441 (2006)

    ADS  Google Scholar 

  98. A.S. Foster, O.H. Pakarinen, J.M. Airaksinen, J.D. Gale, R.M. Nieminen, Simulating atomic force microscopy imaging of the ideal and defected TiO2(110) surface. Phys. Rev. B 68, 196102 (2003)

    Google Scholar 

  99. C.L. Pang, A. Sasahara, H. Onishi, Q. Chen, G. Thornton, Noncontact atomic force microscopy imaging of water dissociation products on TiO2(110). Phys. Rev. B 74, 073411 (2006)

    ADS  Google Scholar 

  100. G.H. Enevoldsen, A.S. Foster, M.C. Christensen, J.V. Lauritsen, F. Besenbacher, Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO2(110): experiments and atomistic simulations. Phys. Rev. B 76, 205415 (2007)

    ADS  Google Scholar 

  101. F.F. Canova, A.S. Foster, M.K. Rasmussen, K. Meinander, F. Besenbacher, J.V. Lauritsen, Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface. Nanotechnology 23, 325703 (2012)

    Google Scholar 

  102. M.K. Rasmussen, A.S. Foster, F.F. Canova, B. Hinnemann, S. Helveg, K. Meinander, F. Besenbacher, J.V. Lauritsen, Noncontact atomic force microscopy imaging of atomic structure and cation defects of the polar MgAl2O4(100) surface: experiments and first-principles simulations. Phys. Rev. B 84, 235419 (2011)

    ADS  Google Scholar 

  103. P.V. Sushko, A.S. Foster, L.N. Kantorovich, A.L. Shluger, Investigating the effects of silicon tip contamination in noncontact scanning force microscopy (SFM). Appl. Surf. Sci. 145, 608–612 (1999)

    ADS  Google Scholar 

  104. A. Yurtsever, Y. Sugimoto, M. Abe, S. Morita, NC-AFM imaging of the TiO2(110)-(1 × 1) surface at low temperature. Nanotechnology 21, 165702 (2010)

    ADS  Google Scholar 

  105. P. Rahe, R. Bechstein, J. Schutte, F. Ostendorf, A. Kühnle, Repulsive interaction and contrast inversion in noncontact atomic force microscopy imaging of adsorbates. Phys. Rev. B 77, 195410 (2008)

    ADS  Google Scholar 

  106. R. Bechstein, C. Gonzalez, J. Schutte, P. Jelinek, R. Perez, A. Kühnle, ‘All-inclusive’ imaging of the rutile TiO2(110) surface using NC-AFM. Nanotechnology 20, 505703 (2009)

    Google Scholar 

  107. L.N. Kantorovich, T. Trevethan, General theory of microscopic dynamical response in surface probe microscopy: from imaging to dissipation. Phys. Rev. Lett. 93, 236102 (2004)

    ADS  Google Scholar 

  108. T. Trevethan, L. Kantorovich, Models of atomic scale contrast in dissipation images of binary ionic surfaces in non-contact atomic force microscopy. Nanotechnology 17, S205–S212 (2006)

    ADS  Google Scholar 

  109. A. Schwarz, H. Holscher, S.M. Langkat, R. Wiesendanger, Three-dimensional force field spectroscopy, in Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, vol. 696, pp. 68–78 (2003)

    Google Scholar 

  110. M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich, The force needed to move an atom on a surface. Science 319, 1066–1069 (2008)

    ADS  Google Scholar 

  111. Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, S. Morita, Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4, 136–156 (2005)

    ADS  Google Scholar 

  112. N. Oyabu, O. Custance, I.S. Yi, Y. Sugawara, S. Morita, Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003)

    Google Scholar 

  113. G.H. Enevoldsen, H.P. Pinto, A.S. Foster, M.C.R. Jensen, W.A. Hofer, B. Hammer, J.V. Lauritsen, F. Besenbacher, Imaging of the hydrogen subsurface site in rutile TiO2. Phys. Rev. Lett. 102, 136103 (2009)

    ADS  Google Scholar 

  114. S. Torbrügge, M. Cranney, M. Reichling, Morphology of step structures on CeO2(111). Appl. Phys. Lett. 93, 073112 (2008)

    ADS  Google Scholar 

  115. S. Gritschneder, Y. Iwasawa, M. Reichling, Strong adhesion of water to CeO2(111). Nanotechnology 18, 044025 (2007)

    ADS  Google Scholar 

  116. S. Gritschneder, Y. Namai, Y. Iwasawa, M. Reichling, Structural features of CeO2(111) revealed by dynamic SFM. Nanotechnology 16, S41–S48 (2005)

    ADS  Google Scholar 

  117. K. Fukui, H. Onishi, Y. Iwasawa, Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chem. Phys. Lett. 280, 296–301 (1997)

    ADS  Google Scholar 

  118. R.E. Tanner, A. Sasahara, Y. Liang, E.I. Altman, H. Onishi, Formic acid adsorption on anatase TiO2(001)-(1 × 4) thin films studied by NC-AFM and STM. J. Phys. Chem. B 106, 8211–8222 (2002)

    Google Scholar 

  119. H. Onishi, A. Sasahara, H. Uetsuka, T.A. Ishibashi, Molecule-dependent topography determined by noncontact atomic force microscopy: carboxylates on TiO2(110). Appl. Surf. Sci. 188, 257–264 (2002)

    ADS  Google Scholar 

  120. A. Sasahara, H. Uetsuka, H. Onishi, Single-molecule analysis by noncontact atomic force microscopy. J. Phys. Chem. B 105, 1–4 (2001)

    Google Scholar 

  121. A. Yurtsever, Y. Sugimoto, M. Abe, K. Matsunaga, I. Tanaka, S. Morita, Alkali-metal adsorption and manipulation on a hydroxylated TiO2(110) surface using atomic force microscopy. Phys. Rev. B 84, 085413 (2011)

    ADS  Google Scholar 

  122. L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W.M. Abdel-Mageed, M. Jaspars, Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2, 821–825 (2010)

    Google Scholar 

  123. J. Zhang, P.C. Chen, B.K. Yuan, W. Ji, Z.H. Cheng, X.H. Qiu, Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013)

    ADS  Google Scholar 

  124. D.G. de Oteyza, P. Gorman, Y.C. Chen, S. Wickenburg, A. Riss, D.J. Mowbray, G. Etkin, Z. Pedramrazi, H.Z. Tsai, A. Rubio, M.F. Crommie, F.R. Fischer, Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013)

    ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to all members of the SPM-UHV and nanocatalysis groups at Interdisciplinary Nanoscience Center (iNANO) at Aarhus University. Support from the European Research Foundation (ERC Grant no. 239834) is acknowledged. Adam Foster, Stefan Wendt, Ruben Perez, Ayhan Yurtsever and Ralf Bechstein are all thanked for sharing the original files for the presented figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeppe V. Lauritsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lauritsen, J.V. (2015). Noncontact AFM Imaging of Atomic Defects on the Rutile TiO2(110) Surface. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_8

Download citation

Publish with us

Policies and ethics