Skip to main content

The Structure and Properties of Clean Steps at Oxide Surfaces

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

We present an overview of the structure and properties of clean steps at the surfaces of binary oxides, utilising recent data from scanning probe and spectroscopic experiments, and theoretical calculations. We review and discuss their atomic structure, electronic structure, and interactions with prototypical point defects, using examples from studies on technologically important oxides such as MgO, CeO2, TiO2 and ZrO2. We also review methods of calculating the step formation energy, and discuss reasons for their limited success in explaining the step structures observed in experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.D. Williams, Surface steps and surface morphology: understanding macroscopic phenomena from atomic observations. Surf. Sci. 299(300), 502–524 (1994)

    Article  ADS  Google Scholar 

  2. H.C. Jeong, E.D. Williams, Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34, 171–294 (1999)

    Article  ADS  Google Scholar 

  3. V.A. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  4. H.-J. Freund, H. Kuhlenbeck, V. Staemmler, Oxide surfaces. Rep. Prog. Phys. 59, 283 (1996)

    Article  ADS  Google Scholar 

  5. D.W. Pashley, The direct observation of imperfections in crystals. Rep. Prog. Phys. 28, 291 (1965)

    Article  ADS  Google Scholar 

  6. I.N. Stranski, Zur Theorie des Kristallwachstums. Z. Phys. Chem. 136, 259–278 (1928)

    Google Scholar 

  7. A. Zecchina, M.G. Lofthouse, F.S. Stone, Reflectance spectra of surface states in magnesium oxide and calcium oxide. J. Chem. Soc., Faraday Trans. 1 71, 1476–1490 (1975)

    Article  Google Scholar 

  8. S. Coluccia, A.M. Deane, A.J. Tench, Photoluminescent spectra of surface states in alkaline earth oxides. J. Chem. Soc., Faraday Trans. 1 74, 2913–2922 (1978)

    Article  Google Scholar 

  9. G. Spoto, E.N. Gribov, G. Ricchiardi, A. Damin, D. Scarano, S. Bordiga, C. Lamberti, A. Zecchina, Carbon monoxide MgO from dispersed solids to single crystals: a review and new advances. Prog. Surf. Sci. 76, 71–146 (2004)

    Article  ADS  Google Scholar 

  10. C. Barth, C.R. Henry, Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys. Rev. Lett. 91, 196102 (2003)

    Article  ADS  Google Scholar 

  11. M. Sterrer, M. Heyde, M. Novicki, N. Nilius, T. Risse, H.-P. Rust, G. Pacchioni, H.-J. Freund, Identification of color centers on MgO(001) thin films with scanning tunneling microscopy. J. Phys. Chem. B 110, 46–49 (2006)

    Google Scholar 

  12. C. Barth, C.R. Henry, Kelvin probe force microscopy on MgO(001) surfaces and supported Pd nanoclusters. J. Phys. Chem. C 113, 247–253 (2009)

    Article  Google Scholar 

  13. S.R. Lu, R. Yu, J. Zhu, Atomic steps on the MgO(100) surface. Phys. Rev. B 87, 165436 (2013)

    Article  ADS  Google Scholar 

  14. T.V. Ashworth, C.L. Pang, P.L. Wincott, D.J. Vaughan, G. Thornton, Imaging in situ cleaved MgO (100) with non-contact atomic force microscopy. Appl. Surf. Sci. 210, 2–5 (2003)

    Article  ADS  Google Scholar 

  15. W. Hebenstreit, N. Ruzycki, G.S. Herman, Y. Gao, U. Diebold, Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface. Phys. Rev. B 62, R16334–R16336 (2000)

    Article  ADS  Google Scholar 

  16. X.-Q. Gong, A. Selloni, M. Batzill, U. Diebold, Steps on anatase TiO2(101). Nat. Mater. 5, 665–670 (2006)

    Article  ADS  Google Scholar 

  17. S. Torbrügge, M. Cranney, M. Reichling, Morphology of step structures on CeO2(111). Appl. Phys. Lett. 93, 073112 (2008)

    Article  ADS  Google Scholar 

  18. S.M.F. Shahed, Y. Sainoo, T. Komeda, Scanning tunneling microscope study of surface morphology variation of CeO2(111) with changing annealing condition. Jpn. J. Appl. Phys. 50, 08LB05 (2011)

    Google Scholar 

  19. N. Nilius, S.M. Kozlov, J.-F. Jerratsch, M. Baron, X. Shao, F. Viñes, S. Shaikhutdinov, K.M. Neyman, H.-J. Freund, Formation of one-dimensional electronic states along the step edges of CeO2(111). ACS Nano 6, 1126–1133 (2012)

    Article  Google Scholar 

  20. V.E. Puchin, A.V. Puchina, M. Huisinga, M. Reichling, Theoretical modelling of steps on the CaF2(111) surface. J. Phys.: Condens. Matter 13, 2081−2094 (2001)

    ADS  Google Scholar 

  21. P.W. Tasker, D.M. Duffy, The structure and properties of the stepped surfaces of MgO and NiO. Surf. Sci. 137, 91–102 (1984)

    Article  ADS  Google Scholar 

  22. J.H. Harding, D.J. Harris, S.C. Parker, Atomistic simulation of steps on the MgO(100) surface. Surf. Sci. 422, L183–L187 (1999)

    Article  ADS  Google Scholar 

  23. J. Goniakowski, C. Noguera, Atomic and electronic structure of steps and kinks on MgO(100) and MgO(110). Surf. Sci. 340, 191–204 (1995)

    Article  ADS  Google Scholar 

  24. M.J. Wolf, K.P. McKenna, A.L. Shluger, Hole trapping at surfaces of m-ZrO2 and m-HfO2 nanocrystals. J. Phys. Chem. C 116, 25888–25897 (2012)

    Article  Google Scholar 

  25. U. Martinez, L.B. Vilhelmsen, H.H. Kristoffersen, J. Stausholm-Møller, B. Hammer, Steps on rutile TiO2(110): active sites for water and methanol dissociation. Phys. Rev. B 84, 205434 (2011)

    Article  ADS  Google Scholar 

  26. J. Stausholm-Møller, H.H. Kristoffersen, U. Martinez, B. Hammer, A density functional theory study of atomic steps on stoichiometric rutile TiO2(110). J. Chem. Phys. 139, 234704 (2013)

    Article  ADS  Google Scholar 

  27. E.A. Colbourn, W.C. Mackrodt, Irregularities at the (001) surface of MgO: topography and other aspects. Solid State Ionics 8, 221–231 (1983)

    Article  Google Scholar 

  28. L.N. Kantorovich, J.M. Holender, M.J. Gillan, The energetics and electronic structure of defective and irregular surfaces on MgO. Surf. Sci. 343, 221–239 (1995)

    Article  ADS  Google Scholar 

  29. S.M. Kozlov, F. Viñes, N. Nilius, S. Shaikhutdinov, K.M. Neyman, Absolute surface step energies: accurate theoretical methods applied to ceria nanoislands. J. Phys. Chem. Lett. 3, 1956–1961 (2012)

    Article  Google Scholar 

  30. J.M. Rickman, D.J. Srolovitz, Defect interactions on solid surfaces. Surf. Sci. 284, 211–221 (1993)

    Article  ADS  Google Scholar 

  31. T.P. Hardcastle, C.R. Seabourne, R.M.D. Brydson, K.J.T. Livi, A.J. Scott, Energy of step defects on the TiO2 rutile (110) surface: an ab initio DFT methodology. J. Phys. Chem. C 117, 23766–23780 (2013)

    Article  Google Scholar 

  32. T. Bredow, L. Giordano, F. Cinquini, G. Pacchioni, Electronic properties of rutile TiO2 ultrathin films: odd-even oscillations with the number of layers. Phys. Rev. B 70, 035419 (2004)

    Article  ADS  Google Scholar 

  33. M.W. Finnis, Accessing the excess: an atomistic approach to excesses at planar defects and dislocations in ordered compounds. Phys. Status Solidi A 166, 397–416 (1998)

    Article  ADS  Google Scholar 

  34. V.E. Henrich, S.K. Shaikhutdinov, Atomic geometry of steps on metal-oxide single crystals. Surf. Sci. 574, 306–316 (2005)

    Article  ADS  Google Scholar 

  35. H.-Q. Wang, E.I. Altman, V.E. Henrich, Steps on Fe3O4(100): STM measurements and theoretical calculations. Phys. Rev. B 73, 235418 (2006)

    Article  ADS  Google Scholar 

  36. J.B. Engelhardt, H. Dabringhaus, K. Wandelt, Atomic force microscopy study of the CaF2(111) surface: from cleavage via island to evaporation topographies. Surf. Sci. 448, 187–200 (2000)

    Article  ADS  Google Scholar 

  37. L. Heinke, L. Lichtenstein, G.H. Simon, T. König, M. Heyde, H.-J. Freund, Structure and electronic properties of step edges in the aluminum oxide film on NiAl(110). Phys. Rev. B 82, 075430 (2010)

    Article  ADS  Google Scholar 

  38. A.L. Shluger, P.V. Sushko, L.N. Kantorovich, Spectroscopy of low-coordinated surface sites: theoretical study of MgO. Phys. Rev. B 59, 2417–2430 (1999)

    Article  ADS  Google Scholar 

  39. P.V. Sushko, J.L. Gavartin, A.L. Shluger, Electronic properties of structural defects at the MgO (001) surface. J. Phys. Chem. B 106, 2269–2276 (2002)

    Article  Google Scholar 

  40. K.P. McKenna, P.V. Sushko, A.L. Shluger, Inside powders: a theoretical model of interfaces between MgO nanocrystallites. J. Am. Chem. Soc. 129, 8600–8608 (2007)

    Article  Google Scholar 

  41. C. Chizallet, G. Costentin, H. Lauron-Pernot, J.-M. Krafft, M. Che, F. Delbecq, P. Sautet, Assignment of photoluminescence spectra of MgO powders: TD-DFT cluster calculations combined to experiments. Part I: structure effects on dehydroxylated surfaces. J. Phys. Chem. C 112, 16629–16637 (2008)

    Article  Google Scholar 

  42. M. Sterrer, O. Diwald, E. Knözinger, P.V. Sushko, A.L. Shluger, Energies and dynamics of photoinduced electron and hole processes on MgO powders. J. Phys. Chem. B 106, 12478–12482 (2002)

    Article  Google Scholar 

  43. P.E. Trevisanutto, P.V. Sushko, K.M. Beck, A.G. Joly, W.P. Hess, A.L. Shluger, Excitation, ionization, and desorption: how sub-band gap photons modify the structure of oxide nanoparticles. J. Phys. Chem. C 113, 1274–1279 (2009)

    Article  Google Scholar 

  44. R. Hacquart, J.-M. Krafft, G. Costentin, J. Jupille, Evidence for emission and transfer of energy from excited edge sites of MgO smokes by photoluminescence experiments. Surf. Sci. 595, 172–182 (2005)

    Article  ADS  Google Scholar 

  45. S. Benedetti, H.M. Benia, N. Nilius, S. Valeri, H.-J. Freund, Morphology and optical properties of MgO thin films on Mo(001). Chem. Phys. Lett. 430, 330–335 (2006)

    Article  ADS  Google Scholar 

  46. S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. De Vita, W.-D. Schneider, Insulator at the ultrathin limit: MgO on Ag(001). Phys. Rev. Lett. 87, 276801 (2001)

    Article  ADS  Google Scholar 

  47. M.M. Branda, R.M. Ferullo, M. Causà, F. Illas, Relative stabilities of low index and stepped CeO2 surfaces from hybrid and GGA+U implementations of density functional theory. J. Phys. Chem. C 115, 3716–3721 (2011)

    Article  Google Scholar 

  48. K.P. McKenna, M.J. Wolf, A.L. Shluger, S. Lany, A. Zunger, Two-dimensional polaronic behavior in the binary oxides m-HfO2 and m-ZrO2. Phys. Rev. Lett. 108, 116403 (2012)

    Article  ADS  Google Scholar 

  49. J. Carrasco, N. Lopez, F. Illas, H.-J. Freund, Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. J. Chem. Phys. 125, 074711 (2006)

    Article  ADS  Google Scholar 

  50. D. Ricci, G. Pacchioni, P.V. Sushko, A.L. Shluger, Electron trapping at neutral divacancy sites on the MgO surface. J. Chem. Phys. 117, 2844 (2002)

    Article  ADS  Google Scholar 

  51. C. Di Valentin, K.M. Neyman, T. Risse, M. Sterrer, E. Fischbach, H.-J. Freund, V.N. Nasluzov, G. Pacchioni, N. Rösch, Density-functional model cluster studies of EPR g tensors of F + s centers on the surface of MgO. J. Chem. Phys. 124, 044708 (2006)

    Article  ADS  Google Scholar 

  52. M. Sterrer, E. Fischbach, T. Risse, H.-J. Freund, Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. Phys. Rev. Lett. 94, 186101 (2005)

    Article  ADS  Google Scholar 

  53. T. König, G.H. Simon, H.-P. Rust, G. Pacchioni, M. Heyde, H.-J. Freund, Measuring the charge state of point defects on MgO/Ag(001). J. Am. Chem. Soc. 131, 17544–17545 (2009)

    Article  Google Scholar 

  54. M.M. Branda, C. Loschen, K.M. Neyman, F. Illas, Atomic and electronic structure of cerium oxide stepped model surfaces. J. Phys. Chem. C 112, 17643–17651 (2008)

    Article  Google Scholar 

  55. H.Y. Kim, G. Henkelman, CO oxidation at the interface of Au nanoclusters and the stepped-CeO2(111) surface by the Mars-van Krevelen mechanism. J. Phys. Chem. Lett. 4, 216–221 (2013)

    Article  Google Scholar 

  56. K. Fukui, Y. Iwasawa, Observation of a new ridge structure along steps on the MgO(100) surface by non-contact atomic force microscopy. Surf. Sci. 441, 529–541 (1999)

    Article  ADS  Google Scholar 

  57. W.T. Wallace, B.K. Min, D.W. Goodman, The nucleation, growth, and stability of oxide-supported metal clusters. Top. Catal. 34, 17–30 (2005)

    Article  Google Scholar 

  58. T. Risse, S. Shaikhutdinov, N. Nilius, M. Sterrer, H.-J. Freund, Gold supported on thin oxide films: from single atoms to nanoparticles. Acc. Chem. Res. 41, 949–956 (2008)

    Article  Google Scholar 

  59. P.E. Hillner, A.J. Gratz, S. Manne, P.K. Hansma, Atomic-scale imaging of calcite growth and dissolution in real time. Geology 20, 359–362 (1992)

    Article  ADS  Google Scholar 

  60. J. Schott, O.S. Pokrovsky, E.H. Oelkers, The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev. Mineral. Geochem. 70, 207–258 (2009)

    Article  Google Scholar 

  61. J. Klasa, E. Ruiz-Agudo, L.J. Wang, C.V. Putnis, E. Valsami-Jones, M. Menneken, A. Putnis, An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions. Geochim. Cosmochim. Acta 117, 115–128 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from the European Union via COST Action CM1104 “Reducible Oxide Chemistry, Structure and Functions”, and the provision of access to the facilities of HECToR, the UK’s national high-performance computing service, via the Materials Chemistry Consortium with EPSRC grant number EP/L000202. In addition, MJW would like to acknowledge funding from the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), and J. Kullgren, P. Broqvist and K. Hermansson for their roles in several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolf, M.J., Shluger, A.L. (2015). The Structure and Properties of Clean Steps at Oxide Surfaces. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_6

Download citation

Publish with us

Policies and ethics