Skip to main content

Oxygen Defects at Reducible Oxide Surfaces: The Example of Ceria and Vanadia

  • Chapter
  • First Online:
Defects at Oxide Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

Cerium and vanadium oxide-based systems play a major role in a variety of technological applications, with the reducibility of the systems being crucial to their functionality in the applications. The in-depth understanding and control of the type, density, and distribution of oxygen vacancies provide a means to influence the electronic structure and to tailor the systems’ functionality. Hence, a great deal of experimental and theoretical work has been devoted to the study of partially reduced ceria and vanadia, both surfaces and bulk. Here, theoretical data for structural and electronic properties and energetic quantities related to the formation and interaction of neutral oxygen vacancies at the CeO2(111) and V2O5(001) surfaces are reviewed, discussed and compared. Experimental findings on oxygen defects in ceria and vanadia are briefly reported. Special attention is given to the fate of the electrons left in the system upon vacancy formation, the vacancy-induced lattice relaxation, whether vacancies agglomerate or repel each other, and the ability of state-of-the-art quantum-mechanical methods to provide an accurate decription of the geometric and electronic structures of the partially reduced oxide systems as well as reliable oxygen defect formation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  2. B.M. Weckhuysen, D.E. Keller, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 78, 25–46 (2003). and references therein

    Google Scholar 

  3. A. Trovarelli (ed.): Catalysis by Ceria and Related Materials. Catalytic Science Series, vol. 2 (Imperial College Press, London, 2002)

    Google Scholar 

  4. R.J. Gorte, Ceria in catalysis: From automotive applications to the watergas shift reaction. AIChE J. 56, 1126–1135 (2010)

    Google Scholar 

  5. M.V. Ganduglia-Pirovano, C. Popa, J. Sauer, H. Abbott, A. Uhl, M. Baron, D. Stacchiola, O. Bodarchuk, S. Shaikhutdinov, H.-J. Freund, Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. J. Am. Chem. Soc. 132, 2345–2349 (2010)

    Google Scholar 

  6. G. Vilé, B. Bridier, J. Wichert, J. Pérez-Ramírez, Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew. Chem. Int. Ed. 51, 8620–8623 (2012)

    Google Scholar 

  7. J. Carrasco, G.D. Vilé, D. Fernández-Torre, R. Pérez, J. Pérez-Ramírez, M.V. Ganduglia- Pirovano, Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J. Phys. Chem. C, 118, 5352−5360 (2014)

    Google Scholar 

  8. M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007)

    ADS  Google Scholar 

  9. J. Paier, C. Penschke, J. Sauer, Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem. Rev. 113, 3949–3985 (2013)

    Google Scholar 

  10. G. Pacchioni, Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. J. Chem. Phys. 128, 182505–1–182505-10 (2008)

    Google Scholar 

  11. W. Kohn, Nobel lecture: electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999)

    ADS  Google Scholar 

  12. G.H. Booth, A. Grüneis, G. Kresse, A. Alavi, Towards an exact description of electronic wavefunctions in real solids. Nature 493, 365–370 (2013)

    ADS  Google Scholar 

  13. P.A. Cox, The Electronic Structure and Chemistry of Solids (Oxford University Press, Oxford, 1987)

    Google Scholar 

  14. G. Pacchioni, P.S. Bagus, F. Parmigiani (eds.): Cluster Models for Surface and Bulk Phenomena. NATO ASI Series B, vol. 283 (Plenum, New York, 1992)

    Google Scholar 

  15. P. Huang, E.A. Carter, Advances in correlated electronic ctructure methods for solids, surfaces, and nanostructures. Annu. Rev. Phys. Chem. 59, 261–290 (2008)

    ADS  Google Scholar 

  16. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965)

    MathSciNet  ADS  Google Scholar 

  17. J.P. Perdew, S. Kurth, Density functionals for non-relativistic coulomb systems in the new century, in A Primer in Density Functional Theory, ed. by C. Fiolhais, F. Nogueira, M. Marques (Springer, Berlin Heidelberg, 2003), pp. 1–55

    Google Scholar 

  18. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  20. B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 74137421 (1999)

    Google Scholar 

  21. Z. Yang, T.K. Woo, M. Baudin, K. Hermansson, Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first principles study. J. Chem. Phys. 120, 7741–7749 (2004)

    ADS  Google Scholar 

  22. J. Sauer, J. Döbler, Structure and reactivity of V2O5: bulk solid, nanosized clusters, species supported on silica and alumina, cluster cations and anions. Dalton Trans. 19, 3116–3121 (2004)

    Google Scholar 

  23. M.V. Ganduglia-Pirovano, J. Sauer, Stability of reduced V2O5(001) surfaces. Phys. Rev. B 70, 045422–1–045422-13 (2004)

    ADS  Google Scholar 

  24. J. Goclon, R. Gryboś, M. Witko, J. Hafner, Oxygen vacancy formation on clean and hy- droxylated low-index V2O5 surfaces: a density functional investigation. Phys. Rev. B 79, 075439–1–075439-14 (2009)

    ADS  Google Scholar 

  25. A. Suarez Negreira, S. Aboud, J. Wilcox, Surface reactivity of V2O5(001): effects of vacancies, protonation, hydroxylation, and chlorination. Phys. Rev. B 83, 045423–1–045423-14 (2011)

    ADS  Google Scholar 

  26. K. Hermann, M. Witko, R. Druzinic, R. Tokarz, Oxygen vacancies at oxide surfaces: ab initio density functional theory studies on vanadium pentoxide. Appl. Phys. A 72, 429–442 (2001)

    ADS  Google Scholar 

  27. M. Gruber, K. Hermann, Elementary steps of the catalytic NO x reduction with NH3: cluster studies on reactant adsorption at vanadium oxide substrate. J. Chem. Phys. 138, 094704-1094704-14 (2013) and references therein

    Google Scholar 

  28. F. Illas, I.P.R. Moreira, C. de Graaf, V. Barone, Magnetic coupling in biradicals, binuclear complexes and wide-gap insulators: a survey of ab initio wave function and density functional theory approaches. Theory Chem. Acc. 104, 265–272 (2000)

    Google Scholar 

  29. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    ADS  Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996)

    ADS  Google Scholar 

  31. C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999)

    ADS  Google Scholar 

  32. M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange correlation functional. J. Chem. Phys. 110, 5029–5036 (1999)

    ADS  Google Scholar 

  33. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003)

    ADS  Google Scholar 

  34. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124, 219906 (E) (2006)

    Google Scholar 

  35. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106–1–224106-5 (2006)

    Google Scholar 

  36. J. Paier, M. Marsman, G. Kresse, Why does the B3LYP hybrid functional fail for metals? J. Chem. Phys. 127, 024103-1-024103-10 (2007)

    Google Scholar 

  37. F. Gygi, A. Baldereschi, Self-consistent hartree-fock and screened-exchange calculations in solids—application to silicon. Phys. Rev. B 34, 4405–4408 (1986)

    ADS  Google Scholar 

  38. S. Chawla, G.A. Voth, Exact exchange in ab initio molecular dynamics: an efficient plane wave based algorithm. J. Chem. Phys. 108, 4697–4700 (1998)

    ADS  Google Scholar 

  39. J. Paier, R. Hirsch, M. Marsman, G. Kresse, The Perdew-Burke-Ernzerhof exchange correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 122, 234102-1-234102-13 (2005)

    Google Scholar 

  40. J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006)

    Google Scholar 

  41. J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, Angyan, J.G.: Screened hybrid density functionals applied to solids. J. Chem. Phys. 125, 249901 (E) (2006)

    Google Scholar 

  42. T. Todorova, A.P. Seitsonen, J. Hutter, I.F.W. Kuo, C.J. Mundy, Molecular dynamics simulation of liquid water: hybrid density functionals. J. Phys. Chem. B 110, 3685–3691 (2006)

    Google Scholar 

  43. J.L.F. da Silva, M.V. Ganduglia-Pirovano, J. Sauer, V. Bayer, G. Kresse, A hybrid functionals pplied to rare earth oxides: the example of ceria. Phys. Rev. B 75, 045121-1-045121-10 (2007)

    Google Scholar 

  44. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, 2nd edn. Robert E. Krieger Publishing, Florida, 1989)

    Google Scholar 

  45. M.V. Ganduglia-Pirovano, J.L.F. da Silva, J. Sauer, Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 102, 026101-1-026101-4 (2009)

    Google Scholar 

  46. Y. Pan, N. Nilius, H.-J. Freund, J. Paier, C. Penschke, J. Sauer, Titration of Ce3+ ions in the CeO2(111) surface by Au adatoms. Phys. Rev. Lett. 111, 206101-1206101-5 (2013)

    Google Scholar 

  47. G.E. Murgida, M.V. Ganduglia-Pirovano, Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations. Phys. Rev. Lett. 110, 246101-1-246101-5 (2013)

    Google Scholar 

  48. M. Nolan, Hybrid density functional theory description of oxygen vacancies in the CeO2(110) and (100) surfaces. Chem. Phys. Lett. 499, 126–130 (2010)

    ADS  Google Scholar 

  49. A.M. Burow, M. Sierka, J. Döbler, J. Sauer, Point defects in CaF2 and CeO2 investigated by the periodic electrostatic embedded cluster method. J. Chem. Phys. 130, 174710-1-17471011 (2009)

    Google Scholar 

  50. B. Herschend, M. Baudin, K. Hermansson, Electronic structure of the CeO2(110) surface oxygen vacancy. Surf. Sci. 599, 173–186 (2005)

    ADS  Google Scholar 

  51. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. London A 276, 238–257 (1963)

    ADS  Google Scholar 

  52. J. Hubbard, Electron correlations in narrow energy bands. II. The degenerate band case. Proc. R. Soc. London A 277, 237–259 (1964)

    ADS  Google Scholar 

  53. J. Hubbard, Electron correlations in narrow energy bands. III. An improved solution. Proc. R. Soc. London A 281, 401–419 (1964)

    ADS  Google Scholar 

  54. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys.: Condens. Matter 9, 767–808 (1997)

    ADS  Google Scholar 

  55. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy- loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998)

    ADS  Google Scholar 

  56. H.J. Kulik, N. Marzari, Accurate potential energy surfaces with a DFT+U(R) approach. J. Chem. Phys. 135, 194105–1–194105-10 (2011)

    Google Scholar 

  57. S. Fabris, G. Vicario, G. Balducci, S. de Gironcoli, S. Baroni, Electronic and atomistic structures of clean and reduced ceria surfaces. J. Phys. Chem. B 109, 22860–22867 (2005)

    Google Scholar 

  58. M. Nolan, S. Grigoleit, D.C. Sayle, S.C. Parker, G.W. Watson, Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf. Sci. 576, 217–229 (2005)

    ADS  Google Scholar 

  59. M. Nolan, S.C. Parker, G.W. Watson, The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 595, 223–232 (2005)

    ADS  Google Scholar 

  60. A.D. Mayernick, M.J. Janik, Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J. Phys. Chem. C 112, 14955–14964 (2008)

    Google Scholar 

  61. H.-Y. Li, H.F. Wang, X.Q. Gong, Y.-L. Guo, Y. Guo, G. Lu, P. Hu, Multiple configurations of the two excess 4f electrons on defective CeO2(111): origin and implications. Phys. Rev. B 79, 193401–1–193401-4 (2009)

    ADS  Google Scholar 

  62. C. Zhang, A. Michaelides, D.A. King, S.J. Jenkins, Oxygen vacancy clusters on ceria: decisive role of cerium f electrons. Phys. Rev. B 79, 075433–1–075433-11 (2009)

    ADS  Google Scholar 

  63. J.C. Conesa, Surface anion vacancies on ceria: quantum modelling of mutual interactions and oxygen adsorption. Cat. Today 143, 315–325 (2009)

    Google Scholar 

  64. J.-F. Jerratsch, X. Shao, N. Nilius, H.-J. Freund, C. Popa, M.V. Ganduglia-Pirovano, A.M. Burow, J. Sauer, Electron localization in defective ceria films: a study with scanning- tunneling microscopy and density-functional theory. Phys. Rev. Lett. 106, 246801-1–246801-4 (2011)

    ADS  Google Scholar 

  65. J. Kullgren, K. Hermansson, C. Castleton, Many competing ceria (110) oxygen vacancy structures: From small to large supercells. J. Chem. Phys. 137, 044705–1–044705-9 (2012)

    Google Scholar 

  66. A.P. Amrute, C. Mondelli, M. Moser, G. Novell-Leruth, N. López, D. Rosenthal, R. Farra, M.E. Schuster, D. Teschner, T. Schmidt, J. Pérez-Ramírez, Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2. J. Catal. 286, 287–297 (2012)

    Google Scholar 

  67. A. Peles, GGA+U method from first principles: application to reductionoxidation properties in ceria-based oxides. J. Mater. Sci. 47, 7542–7548 (2012)

    ADS  Google Scholar 

  68. J.J. Plata, A.M. Márquez, J. Fdez. Sanz, Transport properties in the CeO2-x (111) surface: From charge distribution to ion-electron collaborative migration. J. Phys. Chem. C 117, 25497-25503 (2013)

    Google Scholar 

  69. Y. Jiang, J.B. Adams, M. van Schilfgaarde, Density functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. J. Chem. Phys. 123, 064701–1–064701-9 (2005)

    Google Scholar 

  70. C. Loschen, J. Carrasco, K.M. Neyman, F. Illas, First principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U-parameter. Phys. Rev. B 75, 035115-1–035115-8 (2007)

    ADS  Google Scholar 

  71. C.W.M. Castleton, J. Kullgren, K. Hermansson, Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. J. Chem. Phys. 127, 244704–1–244704-11 (2007)

    Google Scholar 

  72. D.A. Andersson, S.I. Simak, B. Johansson, I.A. Abrikosov, N.V. Skorodumova, Modelling of CeO2, Ce2O3, and CeO2-x in the LDA+U formalism. Phys. Rev. B 75, 035109–1–035109-6 (2007)

    ADS  Google Scholar 

  73. S. Lutfalla, V. Shapovalov, A.T. Bell, Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 7, 2218–2223 (2011)

    Google Scholar 

  74. J.J. Plata, A.M. Márquez, J. Fdez. Sanz, Improving the density functional theory+U description of CeO2 by including the contribution of the O2p electrons. J. Chem. Phys. 136, 041101-1–041101-4 (2012)

    Google Scholar 

  75. P.R.L. Keating, D.O. Scanlon, B.J. Morgan, N.M. Galea, G.W. Watson, Analysis of intrinsic defects in CeO2 using a Koopmans-like GGA+U approach. J. Phys. Chem. C 116, 2443–2452 (2012)

    Google Scholar 

  76. B. Meredig, A. Thompson, H.A. Hansen, C. van de Wolverton, A. Walle, Method for locating low-energy solutions within DFT+U. Phys. Rev. B 82, 195128-1–195128-5 (2010)

    ADS  Google Scholar 

  77. B. Dorado, M. Freyss, B. Amadon, M. Bertolus, G. Jomard, P. Garcia, Advances in first- principles modelling of point defects in UO2: f electron correlations and the issue of local energy minima. J. Phys. Condens. Matter 25, 333201–1–333201-13 (2013)

    Google Scholar 

  78. J.P. Allen, G.W. Watson, Occupation matrix control of d- and f-electron localisations using DFT+U. Phys. Chem. Chem. Phys. 16, 21016–21031 (2014)

    Google Scholar 

  79. R.-P. Blum, H. Niehus, C. Hucho, R. Fortrie, M.V. Ganduglia-Pirovano, J. Sauer, S. Shaikhutdinov, H.-J. Freund, Surface metal-insulator transition on a vanadium pentoxide (001) single srystal. Phys. Rev. Lett. 99, 226103-1-226103-4 (2007)

    Google Scholar 

  80. S. Laubach, P.C. Schmidt, A. Thissen, F.J. Fernandez-Madrigal, Q.-H. Wu, W. Jaegermann, M. Klemm, S. Horn, Theoretical and experimental determination of the electronic structure of V2O5, reduced V2O5-x and sodium intercalated NaV2O5. Phys. Chem. Chem. Phys. 9, 2564–2576 (2007)

    Google Scholar 

  81. D.O. Scanlon, A. Walsh, B.J. Morgan, G.W. Watson, An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. J. Phys. Chem. C 112, 9903–9911 (2008)

    Google Scholar 

  82. N. Marom, A. Tkatchenko, M. Rossi, V.V. Gobre, O. Hod, M. Scheffler, L. Kronik, Dispersion interactions with density-functional theory: benchmarking semiempirical and interatomic pairwise corrected density functionals. J. Chem. Theory Comput. 7, 3944–3951 (2011)

    Google Scholar 

  83. T. Kerber, M. Sierka, J. Sauer, Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory. J. Comput. Chem. 29, 2088–2097 (2008)

    Google Scholar 

  84. T. Bucko, J. Hafner, S. Lebegue, J.G. Angyan, Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010)

    Google Scholar 

  85. E. Londero, E. Schroder, Role of van der Waals bonding in the layered oxide V2O5: first- principles density-functional calculations. Phys. Rev. B 82, 054116–1–054116-8 (2010)

    ADS  Google Scholar 

  86. E. Londero, E. Schröder, Vanadium pentoxide (V2O5): a van der Waals density functional study. Comput. Phys. Commun. 182, 1805–1809 (2011)

    ADS  Google Scholar 

  87. G. Zhou, P.R. Shah, T. Kim, P. Fornasiero, R.J. Gorte, Oxidation entropies and enthalpies of ceria-zirconia solid solutions. Cat. Today 123, 86–93 (2007)

    Google Scholar 

  88. G. Zhou, P.R. Shah, T. Montini, P. Fornasiero, R.J. Gorte, Oxidation enthalpies for reduction of ceria surfaces. Surf. Sci. 601, 2512–2519 (2007)

    ADS  Google Scholar 

  89. B. Beck, M. Harth, N.G. Hamilton, C. Carrero, J.J. Uhlrich, A. Trunschke, S. Shaikhutdinov, H. Schubert, H.-J. Freund, R. Schlögl, J. Sauer, R. Schomäcker, Partial oxidation of ethanol on vanadia catalysts on supporting oxides with different redox properties compared to propane. J. Catal. 296, 120–131 (2012)

    Google Scholar 

  90. K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406–1–035406-4 (2001)

    ADS  Google Scholar 

  91. B. Meyer, First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen. Phys. Rev. B 69, 045416–1–045416-10 (2004)

    ADS  Google Scholar 

  92. Reuter, K., Frenkel, D., M. Scheffler, M.: The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116105-1-116105-4 (2004)

    Google Scholar 

  93. K. Honkala, A. Hellman, I.N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C.H. Christensen, J.K. Nørskov, Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005)

    ADS  Google Scholar 

  94. M. Fronzi, A. Soon, B. Delley, E. Traversa, C. Stampfl, Stability and morphology of cerium oxide surfaces in an oxidizing environment: a first-principles investigation. J. Chem. Phys. 131, 104701–1–104701-16 (2009)

    Google Scholar 

  95. N.V. Skorodumova, M. Baudin, K. Hermansson, Surface properties of CeO2 from first principles. Phys. Rev. B 69, 075401–1–075401-8 (2004)

    ADS  Google Scholar 

  96. M. Nolan, Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations. J. Mater. Chem. 21, 9160–9168 (2011)

    Google Scholar 

  97. T. Desaunay, A. Ringuede, M. Cassir, F. Labat, C. Adamo, Modeling basic components of solid oxide fuel cells using density functional theory: bulk and surface properties of CeO2. Surf. Sci. 606, 305–311 (2012)

    ADS  Google Scholar 

  98. D. Marrocchelli, B. Yildiz, First-principles assessment of H2S and H2O reaction mechanisms and the subsequent hydrogen absorption on the CeO2(111) Surface. J. Phys. Chem. C 116, 2411–2424 (2012)

    Google Scholar 

  99. H. Norenberg, G.A.D. Briggs, Defect structure of nonstoichiometric CeO2(111) surfaces studied by scanning tunneling microscopy. Phys. Rev. Lett. 79, 4222–4225 (1997)

    ADS  Google Scholar 

  100. H. Nörenberg, G.A.D. Briggs, Defect formation on CeO2(111) surfaces after annealing studied by STM. Surf. Sci. 424, L352–L355 (1999)

    Google Scholar 

  101. Y. Namai, Y. Fukui, K. Iwasawa, Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J. Phys. Chem. B 107, 11666–11673 (2003)

    Google Scholar 

  102. Y. Namai, Y. Fukui, K. Iwasawa, Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Cat. Today 85, 79–91 (2003)

    Google Scholar 

  103. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Electron localization determines defect formaton on ceria substrates. Science 309, 752–755 (2005)

    ADS  Google Scholar 

  104. S. Torbrügge, M. Reichling, A. Ishiyama, S. Morita, O. Custance, Evidence of subsurface oxygen vacancy ordering on reduced CeO2 (111). Phys. Rev. Lett. 99, 056101–1–056101-4 (2007)

    ADS  Google Scholar 

  105. D.C. Grinter, R. Ithnin, L. Chi, C.L. Pang, G. Thornton, Defect structure of ultrathin ceria films on Pt(111): atomic views from scanning tunnelling microscopy. J. Phys. Chem. C 114, 17036–17041 (2010)

    Google Scholar 

  106. D.D. Koellig, A.M. Boring, J.H. Wood, The electronic structure of CeO2 and PrO2. Solid State Commun. 47, 227–232 (1983)

    ADS  Google Scholar 

  107. E. Wuilloud, B. Delley, W.-D. Schneider, Y. Baer, Spectroscopic evidence for localized and extendedf-symmetry states in CeO2. Phys. Rev. Lett. 53, 202–205 (1984)

    ADS  Google Scholar 

  108. N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 89, 166601–1–166601-4 (2002)

    ADS  Google Scholar 

  109. A. Pfau, K.D. Schierbaum, The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS. UPS and HREELS study. Surf. Sci. 321, 71–80 (1994)

    Google Scholar 

  110. P.S. Bagus, C.J. Nelin, E.S. Ilton, M. Baron, H. Abbott, E. Primorac, H. Kuhlenbeck, S. Shaikhutdinov, H.-J. Freund, The complex core level spectra of CeO2: an analysis in terms of atomic and charge transfer effects. Chem. Phys. Lett. 487, 237–240 (2010)

    ADS  Google Scholar 

  111. D.C. Grinter, C.-M. Yim, C.L. Pang, B. Santos, T.O. Mentes, A. Locatelli, G. Thornton, Oxidation state imaging of ceria island growth on Re(0001). J. Phys. Chem. C 117, 1650916514 (2013)

    Google Scholar 

  112. G. Kresse, P. Blaha, J.L.F. da Silva, M.V. Ganduglia-Pirovano, Comment on Taming multiple valency with density functionals: a case study of defective ceria. Phys. Rev. B 72, 237101–1–237101-2 (2005)

    ADS  Google Scholar 

  113. M. Nolan, J.E. Fearon, G.W. Watson, Oxygen vacancy formation and migration in ceria. Solid State Ionics 177, 3069–3074 (2006)

    Google Scholar 

  114. P.R.L. Keating, D.O. Scanlon, G.W. Watson, Intrinsic ferromagnetism in CeO2: dispelling the myth of vacancy site localization mediated superexchange. J. Phys.: Condens. Matter 21, 405502–1–405502-6 (2009)

    Google Scholar 

  115. E. Shoko, M.F. Smith, R.H. McKenzie, Charge distribution and transport properties in reduced ceria phases: a review. J. Phys. Chem. Solids 72, 1482–1494 (2011)

    ADS  Google Scholar 

  116. H.L. Tuller, A.S. Nowick, Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 38, 859–867 (1977)

    ADS  Google Scholar 

  117. M.P. Seah, J. Phys. F 10, 1043–1064 (1980)

    ADS  Google Scholar 

  118. Y.M. Chiang, E.B. Lavik, D.A. Blom, Defect thermodynamics and electrical properties of nanocrystalline oxides: pure and doped CeO2. Nanostruct. Mater. 9, 633–642 (1997)

    Google Scholar 

  119. M. Molinari, S.C. Parker, D.C. Sayle, M.S. Islam, Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria. J. Phys. Chem. C 116, 7073–7082 (2012)

    Google Scholar 

  120. C.B. Gopal, A. van de Walle, Ab initio thermodynamics of intrinsic oxygen vacancies in ceria. Phys. Rev. B 86, 134117–1–134117-8 (2012)

    ADS  Google Scholar 

  121. D.R. Lide, H.P. Frederiske (eds.), CRC Handbook of Chemistry and Physics, 76th edn. (CRC, Boca Raton, 1995)

    Google Scholar 

  122. P.A. Cox, Transitition Metal Oxides: An Introduction to their Electronic Structure and Properties (Clarendon Press, Oxford, 1992)

    Google Scholar 

  123. R.G.H. Wyckoff, Crystal Structures (Interscience, New York, 1965)

    Google Scholar 

  124. M.N. Colpaert, P. Clauws, L. Fiermans, J. Vennik, Thermal and low energy electron bombardment induced oxygen loss of V2O5 single crystals: transition into V6O13. Surf. Sci. 36, 513–525 (1973)

    ADS  Google Scholar 

  125. Z. Zhang, V.E. Henrich, Surface electronic structure of V2O5(001): defect states and chemisorption. Surf. Sci. 321, 133–144 (1994)

    ADS  Google Scholar 

  126. R.L. Smith, W. Lu, G.S. Rohrer, The observation of oxygen disorder on the V2O5(001) surface using scanning tunneling microscopy. Surf. Sci. 322, 293–300 (1995)

    ADS  Google Scholar 

  127. R.A. Goschke, K. Vey, M. Maier, U. Walter, E. Goering, M. Klemm, S. Horn, Tip induced changes of atomic scale images of the vanadium pentoxide surface. Surf. Sci. 348, 305–310 (1996)

    ADS  Google Scholar 

  128. K. Devriendt, H. Poelman, L. Fiermans, Thermal reduction of vanadium pentoxide: an XPD study. Surf. Sci. 433–435, 734–739 (1999)

    Google Scholar 

  129. Q.H. Wu, A. Thissen, W. Jaegermann, M.L. Liu, Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface. Appl. Surf. Sci. 236, 473–478 (2004)

    ADS  Google Scholar 

  130. L. Fiermans, P. Clauws, W. Lambrecht, L. Vandenbroucke, J. Vennik, Single crystal V2O5 and lower oxides a survey of their electronic, optical, structural and surface properties. Phys. Status Solidi A 59, 485–504 (1980)

    ADS  Google Scholar 

  131. N. Kenny, C.R. Kannerwurf, D.H. Whitmore, Optical absorption coefficient of vanadium pentoxide single crystals. J. Phys. Chem. Solids 27, 1237–1246 (1966)

    ADS  Google Scholar 

  132. Z. Bodo, I. Hevesi, Optical absorption near the absorption edge in V2O5 single crystals. Phys. Status Solidi 20, K45–K49 (1967)

    ADS  Google Scholar 

  133. Z.R. Xiao, G.Y. Guo, Structural, electronic and magnetic properties of V2O5–x: an ab initio study. J. Chem. Phys. 130, 214704–1–214704-10 (2009)

    Google Scholar 

  134. B. Tepper, B. Richter, A.-C. Dupuis, H. Kuhlenbeck, C. Hucho, P. Schilbe, M.A. bin Yarmo, H.-J. Freund, Adsorption of molecular and atomic hydrogen on vacuum cleaved V2O5(001). Surf. Sci. 496, 64–72 (2002)

    ADS  Google Scholar 

  135. W. Lambrecht, B. Djafari-Rouhani, J. Vennik, Electronic structure of the vanadyl oxygen vacancy in V2O5: periodic vacancy single layer model. Solid State Commun. 39, 257–261 (1981)

    ADS  Google Scholar 

  136. K. Hermann, M. Witko, Druzinic: electronic properties, structure and adsorption at vanadium oxide: density functional theory studies. Faraday Discuss. 114, 53–66 (1999)

    ADS  Google Scholar 

  137. R. Enjalbert, J. Galy, A refinement of the structure of V2O5. Acta Cryst. C 42, 1467–1469 (1986)

    Google Scholar 

  138. L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107–1–195107-6 (2006)

    ADS  Google Scholar 

  139. R. Tokartz-Sobieraj, M. Witko, R. Gryboś, Reduction and re-oxidation of molybdena and vanadia: DFT cluster model studies. Catal. Today 99, 241–253 (2005)

    Google Scholar 

  140. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972)

    Google Scholar 

Download references

Acknowledgments

I am most indebted to my collaborators Juarez L.F. da Silva, Cristina Popa, Joachim Sauer, and Gustavo Murgida, who have contributed substantially over the last few years to the study of oxygen defects at cerium oxide surfaces; Joachim Paier and Christopher Penschke are thanked for discussions on their recent work on the same topic. I thank Rémy Fortrie together with Joachim Sauer for our joint work on reduced vanadium oxide surfaces. I also thank Niklas Nilius, Shamil Shaikhutdinov and Hans-Joachim Freund for the fruitful collaboration and Geoff Thornton and Michael Reichling for useful discussions. The German Science Foundation (DFG) within the finished SFB 546, the Spanish Ministry of Economy and Competitiveness (Grant No. CTQ2012-32928) and the COST Action CM1104 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Verónica Ganduglia-Pirovano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganduglia-Pirovano, M.V. (2015). Oxygen Defects at Reducible Oxide Surfaces: The Example of Ceria and Vanadia. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_5

Download citation

Publish with us

Policies and ethics