Skip to main content

Defects on TiO2—Key Pathways to Important Surface Processes

  • Chapter
  • First Online:
Defects at Oxide Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

Defects govern most of the applications of TiO2 in the fields of catalysis, photocatalysis and photoelectronics. In this chapter we present a general introduction to defects in solids. We then present surface science studies of point defects in TiO2 and their influence on the chemistry and photochemistry behavior of TiO2. The principles illustrated for TiO2 apply also to other oxide-semiconductors and insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.R. Barrett, A.S. Tetelman, W.D. Nix, The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, 1973)

    Google Scholar 

  2. D.M. Smyth, The Defect Chemistry of Metal Oxides (Oxford University, Oxford, 2000)

    Google Scholar 

  3. A.L. Linsebigler, G.Q. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Google Scholar 

  4. T.L. Thompson, J.T. Yates Jr., Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 106, 4428–4453 (2006)

    Google Scholar 

  5. E.W. McFarland, H. Metiu, Catalysis by doped oxides. Chem. Rev. 113, 4391–4427 (2013)

    Google Scholar 

  6. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    ADS  Google Scholar 

  7. M.A. Henderson, A surface sciecne perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)

    ADS  Google Scholar 

  8. H. Kamisaka, K. Yamashita, Theoretical study of the interstitial oxygen atom in anatase and rutile TiO2: electron trapping and elongation of the r(O-O) bond. J. Phys. Chem. C 115, 8265–8273 (2011)

    Google Scholar 

  9. S. Na-Phattalung, M.F. Smith, K. Kim, M.H. Du, S.H. Wei, S.B. Zhang, S. Limpijumnong, First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006)

    ADS  Google Scholar 

  10. A.G. Hollister, P. Gorai, E.G. Seebauer, Surface-based manipulation of point defects in rutile TiO2. Appl. Phys. Lett. 102, 231601 (2013)

    ADS  Google Scholar 

  11. G.H. Enevoldsen, H.P. Pinto, A.S. Foster, M.C.R. Jensen, W.A. Hofer, B. Hammer, J.V. Lauritsen, F. Besenbacher, Imaging of the hydrogen subsurface site in rutile TiO2. Phys. Rev. Lett. 102, 136103 (2009)

    ADS  Google Scholar 

  12. Ç. Kılıç, A. Zunger, n-type doping of oxides by hydrogen. Appl. Phys. Lett. 81, 73 (2002)

    ADS  Google Scholar 

  13. D.M. Chen, D. Yang, Q. Wang, Z.Y. Jiang, Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45, 4110–4116 (2006)

    Google Scholar 

  14. E. Finazzi, C. Di Valentin, G. Pacchioni, Boron-doped anatase TiO2: pure and hybrid DFT calculations. J. Phys. Chem. C 113, 220–228 (2009)

    Google Scholar 

  15. N.D. Feng, A.M. Zheng, Q. Wang, P.P. Ren, X.Z. Gao, S.B. Liu, Z.R. Shen, T.H. Chen, F. Deng, Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J. Phys. Chem. C 115, 2709–2719 (2011)

    Google Scholar 

  16. L. Artiglia, D. Lazzari, S. Agnoli, G.A. Rizzi, G. Granozzi, Searching for the formation of Ti-B bonds in B-doped TiO2-rutile. J. Phys. Chem. C 117, 13163–13172 (2013)

    Google Scholar 

  17. C. Di Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide. Chem. Mater. 17, 6656–6665 (2005)

    Google Scholar 

  18. O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates Jr., Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J. Phys. Chem. B 108, 6004–6008 (2004)

    Google Scholar 

  19. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 109, 11414–11419 (2005)

    Google Scholar 

  20. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, N-doped TiO2: theory and experiment. Chem. Phys. 339, 44–56 (2007)

    ADS  Google Scholar 

  21. F. Peng, L.F. Cai, H. Yu, H.J. Wang, J. Yang, Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J. Solid State Chem. 181, 130–136 (2008)

    ADS  Google Scholar 

  22. E.A. Reyes-Garcia, Y.P. Sun, K. Reyes-Gil, D. Raftery, 15N solid state NMR and EPR characterization of N-doped TiO2 photocatalysts. J. Phys. Chem. C 111, 2738–2748 (2007)

    Google Scholar 

  23. H. Shen, L. Mi, P. Xu, W.D. Shen, P.N. Wang, Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Appl. Surf. Sci. 253, 7024–7028 (2007)

    ADS  Google Scholar 

  24. U. Gesenhues, T. Rentschler, Crystal growth and defect structure of Al3+-doped rutile. J. Solid State Chem. 143, 210–218 (1999)

    ADS  Google Scholar 

  25. S.T. Martin, C.L. Morrision, M.R. Hoffmann, Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J. Phys. Chem. 98, 13695–13704 (1994)

    Google Scholar 

  26. F. Kubec, Z. Šroubek, Paramagnetic resonance of interstitial V4+ in TiO2. J. Chem. Phys. 57, 1660 (1972)

    ADS  Google Scholar 

  27. J.A. Wang, R. Limas-Ballesteros, T. López, A. Moreno, R. Gómez, O. Novaro, X. Bokhimi, Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. J. Phys. Chem. B 105, 9692–9698 (2001)

    Google Scholar 

  28. W.T. Geng, K.S. Kim, Structural, electronic, and magnetic properties of a ferromagnetic semiconductor: Co-doped TiO2 rutile. Phys. Rev. B 68, 125203 (2003)

    ADS  Google Scholar 

  29. A. Sasahara, M. Tomitori, XPS and STM study of Nb-doped TiO2(110) (1 × 1) surfaces. J. Phys. Chem. C 117, 17680–17686 (2013)

    Google Scholar 

  30. M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007)

    ADS  Google Scholar 

  31. M.K. Nowotny, T. Bak, J. Nowotny, C.C. Sorrell, Titanium vacancies in nonstoichiometric TiO2 single crystal. Phys. Status Solidi B 242, R88–R90 (2005)

    ADS  Google Scholar 

  32. I.E. Grey, N.C. Wilson, Titanium vacancy defects in sol-gel prepared anatase. J. Solid State Chem. 180, 670–678 (2007)

    ADS  Google Scholar 

  33. X. Bokhimi, A. Morales, O. Novaro, T. Lopez, E. Sanchez, R. Gomez, Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol-gel-TiO2 crystalline phases. J. Mater. Res. 10, 2788–2796 (1995)

    ADS  Google Scholar 

  34. N.O. Gopal, H.-H. Lo, T.-F. Ke, C.-H. Lee, C.-C. Chou, J.-D. Wu, S.-C. Sheu, S.-C. Ke, Visible light active phosphorus-doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation. J. Phys. Chem. C 116, 16191–16197 (2012)

    Google Scholar 

  35. R.Y. Zheng, L. Lin, J.L. Xie, Y.X. Zhu, Y.C. Xie, State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. J. Phys. Chem. C 112, 15502–15509 (2008)

    Google Scholar 

  36. R. Long, N.J. English, Energetic and electronic properties of P doping at the rutile TiO2(110) surface from first principles. J. Phys. Chem. C 113, 9423–9430 (2009)

    Google Scholar 

  37. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 265, 115–121 (2004)

    Google Scholar 

  38. X.W. Zhang, L.C. Lei, One step preparation of visible-light responsive Fe-TiO2 coating photocatalysts by MOCVD. Mater. Lett. 62, 895–897 (2008)

    Google Scholar 

  39. M. Liu, X.Q. Qiu, M. Miyauchi, K. Hashimoto, Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J. Am. Chem. Soc. 135, 10064–10072 (2013)

    Google Scholar 

  40. E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca, Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc. 104, 2996–3002 (1982)

    Google Scholar 

  41. D.H. Kim, K.S. Lee, Y.-S. Kim, Y.-C. Chung, S.-J. Kim, Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J. Am. Ceram. Soc. 89, 515–518 (2006)

    Google Scholar 

  42. S. Kim, S.-J. Hwang, W. Choi, Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B 109, 24260–24267 (2005)

    Google Scholar 

  43. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Google Scholar 

  44. M. Batzill, E.H. Morales, U. Diebold, Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 96, 026103 (2006)

    ADS  Google Scholar 

  45. J.G. Tao, M. Yang, J.W. Chai, J.S. Pan, Y.P. Feng, S.J. Wang, Atomic N modified rutile TiO2(110) surface layer with significant visible light photoactivity. J. Phys. Chem. C 118, 994–1000 (2014)

    Google Scholar 

  46. Y. Ortega, O. Lamiel-Garcia, D.F. Hevia, S. Tosoni, J. Oviedo, M.A. San-Miguel, F. Illas, Theoretical study of the fluorine doped anatase surfaces. Surf. Sci. 618, 154–158 (2013)

    ADS  Google Scholar 

  47. A.M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. Di Valentin, G. Pacchioni, The nature of defects in fluorine-doped TiO2. J. Phys. Chem. C 112, 8951–8956 (2008)

    Google Scholar 

  48. S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)

    ADS  Google Scholar 

  49. K. Palanivelu, J.S. Im, Y.-S. Lee, Carbon doping of TiO2 for visible light photo catalysis—a review. Carbon Sci. 8, 214–224 (2007)

    Google Scholar 

  50. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454–456 (2002)

    ADS  Google Scholar 

  51. T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32, 330–331 (2003)

    Google Scholar 

  52. S. In, A. Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visbible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J. Am. Chem. Soc. 129, 13790–13791 (2007)

    Google Scholar 

  53. Y.L. Wang, K. Duncan, E. Wachsman, F. Ebrahimi, Effects of oxygen vacancy concentration on mechanical properties of cerium oxide. ECS Trans. 1, 23–31 (2006)

    Google Scholar 

  54. F.A. Kröger, H.J. Vink, Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307–435 (1956)

    Google Scholar 

  55. M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny, Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 112, 5275–5300 (2008)

    Google Scholar 

  56. S.I. Cha, K.H. Hwang, Y.H. Kim, M.J. Yun, S.H. Seo, Y.J. Shin, J.H. Moon, D.Y. Lee, Crystal splitting and enhanced photocatalytic behavior of TiO2 rutile nano-belts induced by dislocations. Nanoscale 5, 753–758 (2013)

    ADS  Google Scholar 

  57. F. Silly, M.R. Castell, Formation of single-domain anatase TiO2(001)-(1 × 4) islands on SrTiO3(001) after thermal annealing. Appl. Phys. Lett. 85, 3223–3225 (2004)

    ADS  Google Scholar 

  58. K.K. Adepalli, M. Kelsch, R. Merkle, J. Maier, Influence of line defects on the electrical properties of single crystal TiO2. Adv. Funct. Mater. 23, 1798–1806 (2013)

    Google Scholar 

  59. J.J. Liu, Y.C. Yu, H.L. He, X.G. Jin, K. Xu, Photocatalytic activity of shock-treated TiO2 powder. Mater. Res. Bull. 35, 377–382 (2000)

    Google Scholar 

  60. R.L. Penn, J.F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998)

    ADS  Google Scholar 

  61. R.L. Penn, J.F. Banfield, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999)

    ADS  Google Scholar 

  62. C.-Y. Li, J.-B. Wang, Y.-Q. Wang, Microstructure and photocatalytic activity of titanium dioxide nanoparticles. Chin. Phys. B 21, 098102 (2012)

    ADS  Google Scholar 

  63. J.J. Czyżewski, J. Krajniak, S. Klein, The STM observations of the nano-crackings on a (110) TiO2 surface due to quenching of the crystal. Appl. Surf. Sci. 227, 144–150 (2004)

    ADS  Google Scholar 

  64. H.-M. Benia, P. Myrach, A. Gonchar, T. Risse, N. Nilius, H.-J. Freund, Electron trapping in misfit dislocations of MgO thin films. Phys. Rev. B 81, 241415(R) (2010)

    ADS  Google Scholar 

  65. S. Yamada, M. Tanaka, Structure of a stacking fault in the (101) plane of TiO2. J. Electron Microsc. 1, 67–74 (1997)

    Google Scholar 

  66. A.J.H. Mante, J. Volger, The influence of stacking faults on the thermal conductivity of rutile. Physica 49, 261–277 (1970)

    ADS  Google Scholar 

  67. H. Choi, E. Stathatos, D.D. Dionysiou, Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles. Top. Catal. 44, 513–521 (2007)

    Google Scholar 

  68. H.S. Jie, H. Park, K.-H. Chae, M. Anpo, J.-K. Park, Suppressed recombination of electrons and holes and its role on the improvement of photoreactivity of flame-synthesized TiO2 nanopowders. Chem. Phys. Lett. 470, 269–274 (2009)

    ADS  Google Scholar 

  69. B.P. Uberuaga, X.-M. Bai, Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries. J. Phys.: Condens. Matter 23, 435004 (2011)

    ADS  Google Scholar 

  70. Q. Xu, Y. Ma, J. Zhang, X.L. Wang, Z.C. Feng, C. Li, Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase-rutile phase structure. J. Catal. 278, 329–335 (2011)

    Google Scholar 

  71. M. Kamei, Localization of the photocatalytic reaction on the grain boundary of bicrystalline TiO2. Appl. Phys. Express 1, 101201 (2008)

    ADS  Google Scholar 

  72. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)

    Google Scholar 

  73. P. Vincent, A. Brioude, C. Journet, S. Rabaste, S.T. Purcell, J. Le Brusq, J.C. Plenet, Inclusion of carbon nanotubes in a TiO2 sol-gel matrix. J. Non-Cryst. Solids 311, 130–137 (2002)

    ADS  Google Scholar 

  74. T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc. 127, 3928–3934 (2005)

    Google Scholar 

  75. S. Wendt, P.T. Sprunger, E. Lira, G.K.H. Madesn, Z.S. Li, J.Ø. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320, 1755–1759 (2008)

    ADS  Google Scholar 

  76. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson Jr., J.V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639–3646 (1987)

    Google Scholar 

  77. A. Fahmi, C. Minot, B. Silvi, M. Causa, Theoretical analysis of the structures of titanium dioxide crystals. Phys. Rev. B 47, 11717–11724 (1993)

    ADS  Google Scholar 

  78. J.K. Burdett, Electronic control of the geometry of rutile and related structures. Inorg. Chem. 24, 2244–2253 (1985)

    Google Scholar 

  79. C.L. Pang, R. Lindsay, G. Thornton, Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem. Rev. 113, 3887–3948 (2013)

    Google Scholar 

  80. J.F. Banfield, B.L. Bischoff, M.A. Anderson, TiO2 accessory minerals: coarsening, and transformation kinetics in pure and doped synthetic nanocrystalline materials. Chem Geol. 110, 211–231 (1993)

    Google Scholar 

  81. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. U.S.A. 99, 6476–6481 (2002)

    ADS  Google Scholar 

  82. H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. B 104, 3481–3487 (2000)

    Google Scholar 

  83. M. Ramamoorthy, D. Vanderbilt, R.D. King-Smith, First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 49, 16721–16727 (1994)

    ADS  Google Scholar 

  84. M. Lazzeri, A. Vittadini, A. Selloni, Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63, 155409 (2001)

    ADS  Google Scholar 

  85. M. Lazzeri, A. Vittadini, A. Selloni, Erratum: structure and energetics of stoichiometric TiO2 anatase surfaces [Phys. Rev. B 63, 155409 (2001)]. Phys. Rev. B 65, 119901 (2002)

    ADS  Google Scholar 

  86. J. Oviedo, M.A. San Miguel, J.F. Sanz, Oxygen vacancies on TiO2(110) from first principles calculations. J. Chem. Phys. 121, 7427 (2004)

    ADS  Google Scholar 

  87. K. Jug, N.N. Nair, T. Bredow, Molecualr dynamics investigation of oxygen vacancy diffusion in rutile. Phys. Chem. Chem. Phys. 7, 2616–2621 (2005)

    Google Scholar 

  88. T. Pabisiak, A. Kiejna, Energetics of oxygen vacancies at rutile TiO2(110) surface. Solid State Commun. 144, 324–328 (2007)

    ADS  Google Scholar 

  89. H.Z. Cheng, A. Selloni, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 79, 092101 (2009)

    ADS  Google Scholar 

  90. Z. Dohnálek, I. Lyubinetsky, R. Rousseau, Thermally-driven processes on rutile TiO2(110)-(1 × 1): a direct view at the atomic scale. Prog. Surf. Sci. 85, 161–205 (2010)

    ADS  Google Scholar 

  91. R.L. Kurtz, R. Stock-Bauer, T.E. Madey, Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf. Sci. 218, 178–200 (1989)

    ADS  Google Scholar 

  92. Z.M. Zhang, S.-P. Jeng, V.E. Henrich, Cation-ligand hydridization for stoichiometric and reduced TiO2(110) surfaces determined by resonant photoemission. Phys. Rev. B 43, 12004–12011 (1991)

    ADS  Google Scholar 

  93. R. Heise, R. Courths, S. Witzel, Valence band densities-of-states of TiO2(110) from resonant photoemission and photoelectron diffraction. Solid State Commun. 84, 599–602 (1992)

    ADS  Google Scholar 

  94. V.E. Henrich, G. Dresselhaus, H.J. Zeiger, Observation of two-dimensional phases associated with defect states on the surface of TiO2. Phys. Rev. Lett. 36, 1335–1339 (1976)

    ADS  Google Scholar 

  95. W.S. Epling, C.H.F. Peden, M.A. Henderson, U. Diebold, Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 412–413, 333–343 (1998)

    Google Scholar 

  96. P. Krüger, J. Jupille, S. Bourgeois, B. Domenichini, A. Verdini, L. Floreano, A. Morgante, Intrinsic nature of the excess electron distribution at the TiO2(110) surface. Phys. Rev. Lett. 108, 126803 (2012)

    ADS  Google Scholar 

  97. C.M. Yim, C.L. Pang, G. Thornton, Oxygen vacancy origin of the surface band-gap state of TiO2(110). Phys. Rev. Lett. 104, 036806 (2010)

    ADS  Google Scholar 

  98. K. Mitsuhara, H. Okumura, A. Visikovskiy, M. Takizawa, Y. Kido, The source of the Ti 3d defect state in the band gap of rutile titania (110) surfaces. J. Chem. Phys. 136, 124707 (2012)

    ADS  Google Scholar 

  99. L.M. Liu, P. Crawford, P. Hu, The interaction between adsorbed OH and O2 on TiO2 surfaces. Prog. Surf. Sci. 84, 155–176 (2009)

    ADS  Google Scholar 

  100. C. Di Valentin, G. Pacchioni, A. Selloni, Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543–20552 (2009)

    Google Scholar 

  101. M.A. Henderson, W.S. Epling, C.H.F. Peden, C.L. Perkins, Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110). J. Phys. Chem. B 107, 534–545 (2003)

    Google Scholar 

  102. A.G. Thomas, W.R. Flavell, A.R. Kumarasinghe, A.R. Mallick, D. Tsoutsou, G.C. Smith, R. StockBauer, S. Patel, M. Gratzel, R. Hengerer, Resonant photoemission of anatase TiO2 (101) and (001) single crystals. Phys. Rev. B 2003, 035110 (2003)

    ADS  Google Scholar 

  103. P. Krüger, S. Bourgeois, B. Domenichini, H. Magnan, D. Chandesris, P. Le Fèvre, A.M. Flank, J. Jupille, L. Floreano, A. Cossaro, Defect states at the TiO2(110) surface probed by resonant photoelectron diffraction. Phys. Rev. Lett. 100, 055501 (2008)

    Google Scholar 

  104. S. Chrétien, H. Metiu, Electronic structure of partially reduced rutile TiO2(110) surface: where are the unpaired electrons located? J. Phys. Chem. C 2011, 4696–4705 (2011)

    Google Scholar 

  105. N.A. Deskins, R. Rousseau, M. Dupuis, Distribution of Ti3+ surface sites in reduced TiO2. J. Phys. Chem. C 115, 7562–7572 (2011)

    Google Scholar 

  106. T. Shibuya, K. Yasuoka, S. Mirbt, B. Sanyal, A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2(110) surface by GGA+U and HSE06 methods. J. Phys.: Condens. Matter 24, 435504 (2012)

    ADS  Google Scholar 

  107. P.M. Kowalski, M.F. Camellone, N.N. Nair, B. Meyer, D. Marx, Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys. Rev. Lett. 105, 146405 (2010)

    ADS  Google Scholar 

  108. A.C. Papageorgiou, N.S. Beglitis, C.L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A.J. Fisher, W.A. Hofer, G. Thornton, Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl. Acad. Sci. U.S.A. 107, 2391–2396 (2010)

    ADS  Google Scholar 

  109. T. Minato, Y. Sainoo, Y. Kim, H.S. Kato, K. Aika, M. Kawai, J. Zhao, H. Petek, T. Huang, W. He, B. Wang, Z. Wang, Y. Zhao, J.L. Yang, J.G. Hou, The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface. J. Chem. Phys. 130, 124502 (2009)

    ADS  Google Scholar 

  110. Y.B. He, O. Dulub, H.Z. Cheng, A. Selloni, U. Diebold, Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009)

    ADS  Google Scholar 

  111. P. Scheiber, M. Fidler, O. Dulub, M. Schmid, U. Diebold, W.Y. Hou, U. Aschauer, A. Selloni, (Sub) Surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 109, 136103 (2012)

    ADS  Google Scholar 

  112. G.Q. Lu, A.L. Linsebigler, J.T. Yates Jr., Ti3+ defect sites on TiO2(110): production and chemical detection of active sites. J. Phys. Chem. 98, 11733–11738 (1994)

    Google Scholar 

  113. E. Lira, S. Wendt, P.P. Huo, J.Ø. Hansen, R. Streber, S. Porsgaard, Y.Y. Wei, R. Bechstein, E. Lægsgaard, F. Besenbacher, The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J. Am. Chem. Soc. 133, 6529–6532 (2011)

    Google Scholar 

  114. M.A. Henderson, Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12, 5093 (1996)

    Google Scholar 

  115. T.L. Thompson, O. Diwald, J.T. Yates Jr., CO2 as a probe for monitoring the surface defects on TiO2(110) temperature-programmed desorption. J. Phys. Chem. B 107, 11700–11704 (2003)

    Google Scholar 

  116. S. Wendt, R. Schaub, J. Matthiesen, E.K. Vestergaard, E. Wahlström, M.D. Rasmussen, P. Thostrup, L.M. Molina, E. Lægsgaard, I. Stensgaard, B. Hammer, F. Besenbacher, Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf. Sci. 598, 226–245 (2005)

    ADS  Google Scholar 

  117. U. Diebold, M. Li, O. Dulub, E.L.D. Hebenstreit, W. Hebenstreit, The relationship between bulk and surface properties of rutile TiO2(110). Surf. Rev. Lett. 7, 613–617 (2000)

    Google Scholar 

  118. Z.R. Zhang, Q.F. Ge, S.-C. Li, B.D. Kay, J.M. White, Z. Dohnálek, Imaging intrinsic diffusion of bridge-bonded oxygen vacancies on TiO2(110). Phys. Rev. Lett. 99, 126105 (2007)

    ADS  Google Scholar 

  119. Z.R. Zhang, R. Rousseau, J.L. Gong, S.-C. Li, B.D. Kay, Q.F. Ge, Z. Dohnálek, Vacancy-assisted diffusion of alkoxy species on rutile TiO2(110). Phys. Rev. Lett. 101, 156103 (2008)

    ADS  Google Scholar 

  120. X.F. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J.L. Yang, J.G. Hou, Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1 × 1). J. Chem. Phys. 129, 044703 (2008)

    ADS  Google Scholar 

  121. C.L. Pang, O. Bikondoa, D.S. Humphrey, A.C. Papageorgiou, G. Cabailh, R. Ithnin, Q. Chen, C.A. Muryn, H. Onishi, G. Thornton, Tailored TiO2(110) surfaces and their reactivity. Nanotechnology 17, 5397–5405 (2006)

    ADS  Google Scholar 

  122. O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T.E. Madey, U. Diebold, Electron-induced oxygen desorption from the TiO2(011)-2 × 1 surface leads to self-organized vacancies. Science 317, 1052–1056 (2007)

    ADS  Google Scholar 

  123. N.G. Petrik, Z.R. Zhang, Y.G. Du, Z. Dohnálek, I. Lyubinetsky, G.A. Kimmel, Chemical reactivity of reduced TiO2(110): the dominant role of surface defects in oxygen chemisorption. J. Phys. Chem. C 2009, 12407–12411 (2009)

    Google Scholar 

  124. J. Lee, Z. Zhang, J.T. Yates Jr., Electron-stimulated positive-ion desorption caused by charge transfer from adsorbate to substrate: oxygen adsorbed on TiO2(110). Phys. Rev. B 79, 081408 (2009)

    ADS  Google Scholar 

  125. K. Onda, B. Li, H. Petek, Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates. Phys. Rev. B 70, 045415 (2004)

    ADS  Google Scholar 

  126. Z. Zhang, K. Cao, J.T. Yates Jr., Defect-electron spreading on the TiO2(110) semiconductor surface by water adsorption. J. Phys. Chem. Lett. 4, 674–679 (2013)

    Google Scholar 

  127. M.L. Knotek, P.J. Feibelman, Ion desorption by core-hole Auger decay. Phys. Rev. Lett. 40, 964–967 (1978)

    ADS  Google Scholar 

  128. J. Lee, Z. Zhang, J.T. Yates, Jr., Erratum: electron-stimulated positive-ion desorption caused by charge transfer from adsorbate to substrate: oxygen adsorbed on TiO2(110). Phys. Rev. B 79, 209904(E) (2009). (Phys. Rev. B 79, 081408 (2009))

    Google Scholar 

  129. T.O. Menteş, A. Locatelli, L. Aballe, A. Pavlovska, E. Bauer, T. Pabisiak, A. Kiejna, Surface modification of oxides by electron-stimulated desorption for growth-mode control of metal films: experiment and density-functional calculations. Phys. Rev. B 76, 155413 (2007)

    ADS  Google Scholar 

  130. A. Locatelli, T. Pabisiak, A. Pavlovska, T.O. Menteş, L. Aballe, A. Kiejna, E. Bauer, One-dimensional Au on TiO2. J. Phys.: Condens. Matter 19, 082202 (2007)

    ADS  Google Scholar 

  131. A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)

    Google Scholar 

  132. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997)

    ADS  Google Scholar 

  133. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 103, 2188–2194 (1999)

    Google Scholar 

  134. M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater. 14, 2812–2816 (2002)

    Google Scholar 

  135. A. Nakajima, Koizumi S-i, T. Watanabe, K. Hashimoto, Effect of repeated photo-illumination on the wettability conversion of titanium dioxide. J. Photochem. Photobiol. A 146, 129–132 (2001)

    Google Scholar 

  136. S. Mezhenny, P. Maksymovych, T.L. Thompson, O. Diwald, D. Stahl, S.D. Walck, J.T. Yates Jr., STM studies of defect production on the TiO2(110)-(1 × 1) and TiO2(110)-(1 × 2) surfaces induced by UV irradiation. Chem. Phys. Lett. 369, 152–158 (2003)

    ADS  Google Scholar 

  137. G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew, H. Takakura, Reporting solar cell efficiencies in solar energy materials and solar cells. Sol. Energy Mater Sol. Cells 92, 371–373 (2008)

    Google Scholar 

  138. T. Zubkov, D. Stahl, T.L. Thompson, D. Panayotov, O. Diwald, J.T. Yates Jr., Ultraviolet light-induced hydrophilicity effect on TiO2(110) (1 × 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J. Phys. Chem. B 109, 15454–15462 (2005)

    Google Scholar 

  139. C.B. Xu, W.S. Yang, Q. Guo, D.X. Dai, M.D. Chen, X.M. Yang, Suppression of photoinduced BBO defects generation on TiO2(110) by water. Chin. J. Chem. Phys. 26, 646–650 (2013)

    Google Scholar 

  140. S. Moser, L. Moreschini, J. Jaćimović, O.S. Barišić, H. Berger, A. Magrez, Y.J. Chang, K.S. Kim, A. Bostwick, E. Rotenberg, L. Forró, M. Grioni, Tunable polaronic conduction in anatase TiO2. Phys. Rev. Lett. 110, 196403 (2013)

    ADS  Google Scholar 

  141. M. Stevin, X.F. Hao, B. Daniel, J. Pavelec, A. Novotny, G.S. Parkinson, M. Schmid, G. Kresse, C. Franchini, U. Diebold, Charge trapping at the step edge of TiO2 anatase (101). Angew. Chem. Int. Ed. 53, 4714–4716 (2014)

    Google Scholar 

  142. P. Mars, D.W. van Krevelen, Oxidation carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. Spec. Suppl. 3, 41–59 (1954)

    Google Scholar 

  143. H. Over, Y.D. Kim, A.P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, G. Ertl, Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287, 1474–1476 (2000)

    ADS  Google Scholar 

  144. M. Lewandowski, I.M.N. Groot, S. Shaikhutdinov, H.-J. Freund, Scanning tunneling microscopy evidence for the Mars-van Krevelen type mechanism of low temperature CO oxidation on an FeO(111) film on Pt(111). Catal. Today 181, 52–55 (2012)

    Google Scholar 

  145. Y. Maeda, Y. Iizuka, M. Kohyama, Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J. Am. Chem. Soc. 135, 906–909 (2013)

    Google Scholar 

  146. D. Widmann, R.J. Behm, Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew. Chem. Int. Ed. 50, 10241–10245 (2011)

    Google Scholar 

  147. X.Y. Pan, N. Zhang, X.Z. Fu, Y.-J. Xu, Selective oxidation of benzyl alcohol over TiO2 nanosheets with exposed 001 facets: catalyst deactivation and regeneration. Appl. Catal. A 453, 181–187 (2013)

    Google Scholar 

  148. X.Y. Pan, M.-Q. Yang, X.Z. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601–3614 (2013)

    ADS  Google Scholar 

  149. J.F. Fan, J.T. Yates Jr., Infrared study of the oxidation of hexafluoropropene on TiO2. J. Phys. Chem. 98, 10621–10627 (1994)

    Google Scholar 

  150. D.A. Panayotov, J.R. Morris, Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: adsorbate reaction with lattice oxygen as studied by infrared spectroscopy. J. Phys. Chem. C 113, 15684–15691 (2009)

    Google Scholar 

  151. M. McEntee, J.T. Yates, Jr., (to be published)

    Google Scholar 

  152. S. Chrétien, H. Metiu, Density functional study of the CO oxidation on a doped rutile TiO2(110): effect of ionic Au in catalysis. Catal. Lett. 107, 143–147 (2006)

    Google Scholar 

  153. A. Roldán, M. Boronat, A. Corma, F. Illas, Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO2 by iron doping. J. Phys. Chem. C 114, 6511–6517 (2010)

    Google Scholar 

  154. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, New York, 1994)

    Google Scholar 

  155. L.-Q. Wang, D.R. Baer, M.H. Engelhard, A.N. Shultz, The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surf. Sci. 344, 237–250 (1995)

    ADS  Google Scholar 

  156. T. Minato, M. Kawai, Y. Kim, Creation of single oxygen vacancy on titaniun dioxide surface. J. Mater. Res. 27, 2237–2240 (2012)

    ADS  Google Scholar 

  157. P.A. Desario, L. Chen, M.E. Graham, K.A. Gray, Effect of oxygen deficiency on the photoresponse and reactivity of mixed phase titania thin films. J. Vac. Sci. Technol. A 29, 031508 (2011)

    Google Scholar 

  158. I. Justicia, G. Garcia, G.A. Battiston, R. Gerbasil, F. Ager, M. Guerra, J. Caixach, J.A. Pardo, J. Rivera, A. Figueras, Photocatalysis in the visible range of sub-stoichiometric anatase films prepared by MOCVD. Electrochim. Acta 50, 4605–4608 (2005)

    Google Scholar 

  159. C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles. J. Phys. D 42, 205101 (2008)

    ADS  Google Scholar 

  160. H. Lin, A.K. Rumaiz, M. Schulz, D. Wang, R. Rock, C.P. Huang, S.I. Shah, Photocatalytic activity of pulsed laser deposited TiO2 thin films. Mat. Sci. Eng. B 151, 133–139 (2008)

    Google Scholar 

  161. S.-J. Park, J.-P. Lee, J.S. Jang, H. Rhu, H. Yu, B.Y. You, C.S. Kim, K.J. Kim, Y.J. Cho, S. Baik, W. Lee, In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices. Nanotechnology 24, 295202 (2013)

    Google Scholar 

  162. Z. Zhang, J. Lee, J.T. Yates Jr., R. Bechstein, E. Lira, J.Ø. Hansen, S. Wendt, F. Besenbacher, Unraveling the diffusion of bulk Ti interstitials in rutile TiO2(110) by monitoring their reaction with O adatoms. J. Phys. Chem. C 114, 3059–3062 (2010)

    Google Scholar 

  163. Y.G. Du, Z. Dohnálek, I. Lyubinetsky, Transient mobility of oxygen adatoms upon O2 dissociation on reduced TiO2(110). J. Phys. Chem. C 112, 2649–2653 (2008)

    Google Scholar 

  164. O. Bikondoa, C.L. Pang, R. Ithnin, C.A. Muryn, H. Onishi, G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189–192 (2006)

    ADS  Google Scholar 

  165. P. Scheiber, A. Riss, M. Schmid, P. Varga, U. Diebold, Observation and destruction of an elusive adsorbate with STM: O2/TiO2(110). Phys. Rev. Lett. 105, 216101 (2010)

    ADS  Google Scholar 

  166. Z.T. Wang, Y.G. Du, Z. Dohnálek, I. Lyubinetsky, Direct observation of site-specific molecular chemisorption of O2 on TiO2(110). J. Phys. Chem. Lett. 1, 3524–3529 (2010)

    Google Scholar 

  167. S.J. Tan, Y.F. Ji, Y. Zhao, A.D. Zhao, B. Wang, J.L. Yang, J.G. Hou, Molecular oxygen adsorption behaviors on the rutile TiO2(110) 1 × 1 surface: an in situ study with low-temperature scanning tunneling microscopy. J. Am. Chem. Soc. 133, 2002–2009 (2011)

    Google Scholar 

  168. E. Lira, J.Ø. Hansen, P.P. Huo, R. Bechstein, P. Galliker, E. Lægsgaard, B. Hammer, S. Wendt, F. Besenbacher, Dissociative and molecular oxygen chemisorption channels on reduced rutile TiO2(110): an STM and TPD study. Surf. Sci. 604, 1945–1960 (2010)

    ADS  Google Scholar 

  169. X. Lin, Z.-T. Wang, I. Lyubinetsky, B.D. Kay, Z. Dohnálek, Interaction of CO2 with oxygen adatoms on rutile TiO2(110). Phys. Chem. Chem. Phys. 15, 6190–6195 (2013)

    Google Scholar 

  170. C.J. Zhang, P.J.D. Lindan, A density functional theory study of the coadsorption of water and oxygen on TiO2(110). J. Chem. Phys. 121, 3811–3815 (2004)

    ADS  Google Scholar 

  171. J. Lee, Z. Zhang, X.Y. Deng, D.C. Sorescu, C. Matranga, J.T. Yates Jr., Interaction of CO with oxygen adatoms on TiO2(110). J. Phys. Chem. C 115, 4163–4167 (2011)

    Google Scholar 

  172. Z. Wang, Y. Zhao, X.F. Cui, S.J. Tan, A.D. Zhao, B. Wang, J.L. Yang, J.G. Hou, Adsorption of CO on rutile TiO2(110) 1 × 1 surface with preadsorbed O adatoms. J. Phys. Chem. C 114, 18222–18227 (2010)

    Google Scholar 

  173. X.Y. Wu, A. Selloni, S. Nayak, First principles study of CO oxidation on TiO2(110): the role of surface oxygen vacancies. J. Chem. Phys. 120, 4512 (2004)

    ADS  Google Scholar 

  174. M. Ohwada, K. Kimoto, T. Mizoguchi, Y. Ebina, T. Sasaki, Atomic structure of titania nanosheet with vacancies. Sci. Rep. 3, 2801 (2013)

    ADS  Google Scholar 

  175. E. Yagi, R.R. Hasiguti, M. Aono, Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2−x. Phys. Rev. B 54, 7945–7956 (1996)

    ADS  Google Scholar 

  176. P.F. Chester, Electron spin resonance in semiconducting rutile. J. Appl. Phys. 32, 2233–2236 (1961)

    ADS  Google Scholar 

  177. P.I. Kingbury Jr., W.D. Ohlsen, O.W. Johnson, Defects in rutile. I. Electron paramagnetic resonance of interstitially doped n-type rutile. Phys. Rev. 175, 1091–1098 (1968)

    ADS  Google Scholar 

  178. L.N. Shen, O.W. Johnson, W.D. Ohlsen, J.W. DeFord, Reinterpretation of the “Ti3+ interstitial” electron-spin-resonance spectrum in rutile. Phys. Rev. B 10, 1823–1825 (1974)

    ADS  Google Scholar 

  179. F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856–11857 (2010)

    Google Scholar 

  180. E. Finazzi, C. Di Valentin, G. Pacchioni, Nature of Ti interstitials in reduced bulk anatase and rutile TiO2. J. Phys. Chem. C 113, 3382–3385 (2009)

    Google Scholar 

  181. M.A. Henderson, A surface perspective on self-diffusion in rutile TiO2. Surf. Sci. 419, 174–187 (1999)

    ADS  Google Scholar 

  182. M. Li, W. Hebenstreit, U. Diebold, Morphology change of oxygen-restructured TiO2(110) surfaces by UHV annealing: formation of a low-temperature (1 × 2) structure. Phys. Rev. B 61, 4926–4933 (2000)

    ADS  Google Scholar 

  183. M. Li, W. Hebenstreit, U. Diebold, A.M. Tyryshkin, M.K. Bowman, G.G. Dunham, M.A. Henderson, The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals. J. Phys. Chem. B 104, 4944–4950 (2000)

    Google Scholar 

  184. M. Li, W. Hebenstreit, L. Gross, U. Diebold, M.A. Henderson, D.R. Jennison, P.A. Schultz, M.P. Sears, Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study. Surf. Sci. 437, 173–190 (1999)

    ADS  Google Scholar 

  185. R.D. Smith, R.A. Bennett, M. Bowker, Measurement of the surface-growth kinetics of reduced TiO2(110) during reoxidation using time-resolved scanning tunneling microscopy. Phys. Rev. B 66, 035409 (2002)

    ADS  Google Scholar 

  186. K.T. Park, M. Pan, V. Meunier, E.W. Plummer, Reoxidation of TiO2(110) via Ti interstitials and line defects. Phys. Rev. B 75, 245415 (2007)

    ADS  Google Scholar 

  187. K.F. McCarty, Growth regimes of the oxygen-deficient TiO2(110) surface exposed to oxygen. Surf. Sci. 543, 185–206 (2003)

    ADS  Google Scholar 

  188. G.S. Herman, R.T. Zehr, M.A. Henderson, Characterization of oxygen and titanium diffusion at the anatase TiO2(001) surface. Surf. Sci. 612, L5–L8 (2013)

    ADS  Google Scholar 

  189. S. Bonanni, K. Aït-Mansour, W. Harbich, H. Brune, Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J. Am. Chem. Soc. 134, 3445–3450 (2012)

    Google Scholar 

  190. L. Benz, J. Haubrich, R.G. Quiller, S.C. Jensen, C.M. Friend, McMurry chemistry on TiO2(110): reductive C=C coupling of benzaldehyde driven by titanium interstitials. J. Am. Chem. Soc. 131, 15026–15031 (2009)

    Google Scholar 

  191. O. Dulub, W. Hebenstreit, U. Diebold, Imaging cluster surfaces with atomic resolution: the strong metal-support interaction state of Pt supported on TiO2(110). Phys. Rev. Lett. 84, 3646–3649 (2000)

    ADS  Google Scholar 

  192. M. Bowker, R.A. Bennett, The role of Ti3+ interstitials in TiO2(110) reduction and oxidation. J. Phys.: Condens. Matter 21, 474224 (2009)

    ADS  Google Scholar 

  193. S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978)

    Google Scholar 

  194. R.A. Bennett, C.L. Pang, N. Perkins, R.D. Smith, P. Morrall, R.I. Kvon, M. Bowker, Surface structures in the SMSI state; Pd on (1 × 2) reconstructed TiO2(110). J. Phys. Chem. B 106, 4688–4696 (2002)

    Google Scholar 

  195. H. Iddir, S. Öğüt, P. Zapol, N.D. Browning, Diffusion mechanisms of native point defects in rutile TiO2: Ab initio total-energy calculations. Phys. Rev. B 75, 073203 (2007)

    ADS  Google Scholar 

  196. X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    ADS  Google Scholar 

  197. R. Prins, Hydrogen spillover. Facts and fiction. Chem. Rev. 112, 2714–2738 (2012)

    Google Scholar 

  198. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    ADS  Google Scholar 

  199. J.G. Tao, Q. Cuan, X.-Q. Gong, M. Batzill, Diffusion and reaction of hydrogen on rutile TiO2(011)-2 × 1: the role of surface structure. J. Phys. Chem. C 116, 20438–20446 (2012)

    Google Scholar 

  200. X.-L. Yin, M. Calatayud, H. Qiu, Y. Wang, A. Birkner, C. Minot, C. Wöll, Diffusion versus desorption: complex behavior of H atoms on an oxide surface. ChemPhysChem 9, 253–256 (2008)

    Google Scholar 

  201. J.B. Lu, Y. Dai, H. Jin, B.B. Huang, Effective increaing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation. Phys. Chem. Chem. Phys. 13, 18063–18068 (2011)

    Google Scholar 

  202. X.F. Cui, Z. Wang, S.J. Tan, B. Wang, J.L. Yang, J.G. Hou, Identifying hydroxyls on the TiO2(110) 1 × 1 surface with scanning tunneling microscopy. J. Phys. Chem. C 113, 13204–13208 (2009)

    Google Scholar 

  203. Z.K. Zheng, B.B. Huang, J.B. Lu, Z.Y. Wang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.-H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733–5735 (2012)

    Google Scholar 

  204. S. Suzuki, Fuku K-i, Y. Iwasawa, Hydrogen adatoms on TiO2(110)-(1 × 1) characterized by scanning tunneling microscopy and electron stimulated desorption. Phys. Rev. Lett. 84, 2156–2159 (2000)

    ADS  Google Scholar 

  205. J.-M. Pan, B.L. Maschhoff, U. Diebold, T.E. Madey, Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities. J. Vac. Sci. Technol. A 10, 2470–2476 (1992)

    ADS  Google Scholar 

  206. W. Wang, Y.R. Ni, C.H. Lu, Z.Z. Xu, Hydrogenation of TiO2 nanosheets with exposed 001 facets for enhanced photocatalytic activity. RSC Adv. 2, 8286–8288 (2012)

    Google Scholar 

  207. W. Göpel, G. Rocker, R. Feierabend, Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2. Phys. Rev. B 28, 3427–3428 (1983)

    ADS  Google Scholar 

  208. D. Panayotov, J.T. Yates Jr., n-type doping of TiO2 with atomic hydrogen-observation of the production of conduction band electrons by infrared spectroscopy. Chem. Phys. Lett. 436, 204–208 (2007)

    ADS  Google Scholar 

  209. A. Fujishima, X.T. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    ADS  Google Scholar 

  210. S. Wendt, J. Matthiesen, R. Schaub, E.K. Vestergaard, E. Lægsgaard, F. Besenbacher, B. Hammer, Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006)

    ADS  Google Scholar 

  211. Z.R. Zhang, O. Bondarchuk, B.D. Kay, J.M. White, Z. Dohnálek, Imaging water dissociation on TiO2(110): evidence for inequivalent geminate OH groups. J. Phys. Chem. B 110, 21840–21845 (2006)

    Google Scholar 

  212. S.-C. Li, L.-N. Chu, X.-Q. Gong, U. Diebold, Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science 328, 882–884 (2010)

    ADS  Google Scholar 

  213. L.R. Merte, G. Peng, R. Bechstein, F. Rieboldt, C.A. Farberow, L.C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, F. Besenbacher, Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012)

    ADS  Google Scholar 

  214. L.M. Liu, B. McAllister, H.Q. Ye, P. Hu, Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): a density functional theory study on the intrinsic role of water. J. Am. Chem. Soc. 128, 4017–4022 (2006)

    Google Scholar 

  215. X.C. Mao, X.F. Lang, Z.Q. Wang, Q.Q. Hao, B. Wen, Z.F. Ren, D.X. Dai, C.Y. Zhou, L.-M. Liu, X.M. Yang, Band-gap states of TiO2(110): major contribution from surface defects. J. Phys. Chem. Lett. 4, 3829–3844 (2013)

    Google Scholar 

  216. C. Di Valentin, G. Pacchioni, A. Selloni, Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett. 97, 166803 (2006)

    ADS  Google Scholar 

  217. W.P. Chen, K.F. He, Y. Wang, H.L.W. Chan, Z.J. Yan, Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature. Sci. Rep. 3, 3149 (2013)

    ADS  Google Scholar 

  218. H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, C. Wöll, Probing electrons in TiO2 polaronic trap states by IR-absoprtion: evidence for the existence fo hydrogenic states. Sci. Rep. 4, 3808 (2014)

    ADS  Google Scholar 

  219. D.A. Panayotov, S.P. Burrows, J.R. Morris, Infrared spectroscopic studies of conduction band and trapped electrons in UV-photoexcited, H-atom n-doped, and thermally reduced TiO2. J. Phys. Chem. C 116, 4535–4544 (2012)

    Google Scholar 

  220. D.A. Panayotov, J.T. Yates Jr., Spectroscopic detection of hydrogen atom spillover from Au nanoprticles supported on TiO2: use of conduction band electrons. J. Phys. Chem. C 111, 2959–2964 (2007)

    Google Scholar 

  221. M. Anpo, Utilization of TiO2 photocatalysts in green chemistry. Pure Appl. Chem. 72, 1265–1270 (2000)

    Google Scholar 

  222. N. Serpone, E. Borgarello, M. Gratzel, Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through interparticle electron transfer. J. Chem. Soc. Chem. Commun. 1984, 342–344 (1984)

    Google Scholar 

  223. B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    ADS  Google Scholar 

  224. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)

    Google Scholar 

  225. C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visbile-light irradiation. Chem. Soc. Rev. 39, 4206–4219 (2010)

    Google Scholar 

  226. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversionb of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)

    ADS  Google Scholar 

  227. F.M. Hossain, G.E. Murch, L. Sheppard, J. Nowotny, Ab initio electronic structure calculation of oxygen vacancies in rutile titanium dioxide. Solid State Ionics 178, 319–325 (2007)

    Google Scholar 

  228. T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, Y. Iriyama, Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment. J. Mater. Sci. 36, 4201–4207 (2001)

    ADS  Google Scholar 

  229. A. Zaleska, Doped-TiO2: a review. Recent Pat. Eng. 2, 157–164 (2008)

    Google Scholar 

  230. X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2859 (2007)

    Google Scholar 

  231. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)

    Google Scholar 

  232. M.V. Dozzi, E. Selli, Doping TiO2 with p-block elements: effects on photocatalytic activity. J. Photochem. Photobiol. C 14, 13–28 (2013)

    Google Scholar 

  233. J.-Y. Lee, J. Park, J.-H. Cho, Electronic properties of N- and C-doped TiO2. Appl. Phys. Lett. 87, 011904 (2005)

    ADS  Google Scholar 

  234. H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatlytic activity of TiO2−xNx powders. J. Phys. Chem. B 107, 5483–5486 (2003)

    Google Scholar 

  235. N. Serpone, Is the band gap of pristine TiO2 narrowing by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287–24293 (2006)

    Google Scholar 

  236. A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk, N. Serpone, Visible-light-active titania photocatalysts: the case of N-doped TiO2s—properties and some fundamental issues. Int. J. Photoenergy 258394 2008 (2008)

    Google Scholar 

  237. V.N. Kuznetsov, N. Serpone, On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens ananlysis and assignments. J. Phys. Chem. C 113, 15110–15123 (2009)

    Google Scholar 

  238. M. D’Arienzo, N. Siedl, A. Sternig, R. Scotti, F. Morazzoni, J. Bernardi, O. Diwald, Solar light and dopant-induced recombination effects: photoactive nitrogen in TiO2 as a case study. J. Phys. Chem. C 114, 18067–18072 (2010)

    Google Scholar 

  239. R. Katoh, A. Furube, Yamanaka K-i, T. Morikawa, Charge separation and trapping in N-doped TiO2 photocatalysts: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 1, 3261–3265 (2010)

    Google Scholar 

  240. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity an charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)

    Google Scholar 

  241. W.-J. Yin, H.W. Tang, S.H. Wei, M.M. Al-Jassim, J. Turner, Y. Yan, Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2. Phys. Rev. B 82, 045106 (2010)

    ADS  Google Scholar 

  242. Y. Gai, J. Li, S.-S. Li, J.-B. Xia, S.H. Wei, Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102, 036402 (2009)

    ADS  Google Scholar 

  243. W.G. Zhu, X.F. Qiu, V. Iancu, X.-Q. Chen, H. Pan, W. Wang, N.M. Dimitrijevic, T. Rajh, H.M. Meyer III, M.P. Paranthaman, G.M. Stocks, H.H. Weitering, B.H. Gu, G. Eres, Z.Y. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-aation codoping for enhanced visible-light photoactivity. Phys. Rev. Lett. 103, 226401 (2009)

    ADS  Google Scholar 

  244. G. Liu, L.Z. Wang, H.G. Yang, H.-M. Cheng, G.Q. Lu, Titania-based photocatalysts—crytstal growth, doping and heterostructuring. J. Mater. Chem. 20, 831–843 (2010)

    ADS  Google Scholar 

  245. O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck, J.T. Yates Jr., The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J. Phys. Chem. B 108, 52–57 (2004)

    Google Scholar 

  246. M. Batzill, E.H. Morales, U. Diebold, Surface studies of nitrogen implated TiO2. Chem. Phys. 339, 36–43 (2007)

    ADS  Google Scholar 

  247. A. Nambu, J. Graciani, J.A. Rodriguez, Q. Wu, E. Fujita, J.F. Sanz, N doping of TiO2(110): photoemission and density-functional studies. J. Chem. Phys. 125, 094706 (2006)

    ADS  Google Scholar 

  248. T.L. Thompson, J.T. Yates Jr., TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top. Catal. 35, 197–210 (2005)

    Google Scholar 

  249. C. Di Valentin, G. Pacchioni, A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys. Rev. B 70, 085116 (2004)

    ADS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Energy, Office of Basic Energy Sciences and Grant DE-FG02-O9ER16080 for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Yates Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Z., Yates, J.T. (2015). Defects on TiO2—Key Pathways to Important Surface Processes. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_3

Download citation

Publish with us

Policies and ethics