Skip to main content

Photon-, Electron-, and Scanning Tunneling Microscopy-Induced Defects on Oxide Surfaces

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

This chapter is concerned with photon-, electron-, and scanning tunneling microscopy (STM)-induced defects on oxide surfaces. A number of case studies are described for each method of defect creation. The reactivity of these defects, usually oxygen vacancies, is also described. Photon-induced defects on CeO2(111) films are reviewed, as are those on rutile TiO2(110) and V2O5(001) and electron-induced defects on rutile TiO2(110), V2O3(001), CeO2(111) as well as anatase TiO2(101). The STM has been used to create and modify point defects on rutile TiO2(110), anatase TiO2(101), and anatase TiO2(001) (1 × 4), and each of these are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  2. H.A. Al-Abadleh, V.H. Grassian, Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 52, 63–161 (2003)

    Article  ADS  Google Scholar 

  3. C.L. Pang, R. Lindsay, G. Thornton, Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328–2353 (2008)

    Article  Google Scholar 

  4. C.L. Pang, R. Lindsay, G. Thornton, Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem. Rev. 113, 3887–3948 (2013)

    Article  Google Scholar 

  5. R.D. Ramsier, J.T. Yates Jr, Electron-stimulated desorption: principles and applications. Surf. Sci. Rep. 12, 246–378 (1991)

    Article  ADS  Google Scholar 

  6. M.L. Knotek, P.J. Feibelman, Ion desorption by core-hole Auger decay. Phys. Rev. Lett. 40, 964–967 (1978)

    Article  ADS  Google Scholar 

  7. M.L. Knotek, Stimulated desorption. Rep. Prog. Phys. 47, 1499–1561 (1984)

    Article  ADS  Google Scholar 

  8. J. Cazaux, A physical approach to the radiation damage mechanisms induced by X-rays in X-ray microscopy and related techniques. J. Microsc. 188, 106–124 (1997)

    Article  Google Scholar 

  9. A. Zhou, S. Tan, B. Li, B. Wang, J. Yang, J.G. Hou, STM tip-assisted single molecular chemistry. Phys. Chem. Chem. Phys. 15, 12428–12441 (2013)

    Article  Google Scholar 

  10. A. Locatelli, E. Bauer, Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys.: Condens. Matter 20, 093002 (2008)

    ADS  Google Scholar 

  11. S. Günther, B. Kaulich, L. Gregoratti, M. Kiskinova, Photoelectron microscopy and applications in surface and materials science. Prog. Surf. Sci. 70, 187–260 (2002)

    Article  ADS  Google Scholar 

  12. E. Paparazzoa, G.M. Ingo, On the X-ray induced chemical reduction of CeO2 as seen with X-ray photoemission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 95, 301–304 (1998)

    Article  Google Scholar 

  13. Z. Zhang, V.E. Henrich, Surface electronic structure of V2O5(001): defect states and chemisorption. Surf. Sci. 321, 133–144 (1994)

    Article  ADS  Google Scholar 

  14. S. Guimond, J.M. Sturm, D. Göbke, Y. Romanyshyn, M. Naschitzki, H. Kuhlenbeck, H.J. Freund, Well-ordered V2O5(001) thin films on Au(111): growth and thermal stability. J. Phys. Chem. C 112, 11835–11846 (2008)

    Article  Google Scholar 

  15. D.C. Grinter, C.M. Yim, C.L. Pang, B. Santos, T.O. Menteş, A. Locatelli, G. Thornton, Alleviating the effects of beam damage on CeO2(111) (unpublished)

    Google Scholar 

  16. D.C. Grinter, C.M. Yim, C.L. Pang, B. Santos, T.O. Menteş, A. Locatelli, G. Thornton, Oxidation state imaging of ceria island growth on Re(0001). J. Phys. Chem. C 117, 16509–16514 (2013)

    Article  Google Scholar 

  17. A. Locatelli, T. Pabisiak, A. Pavlovska, T.O. Mentes, L. Aballe, A. Kiejna, E. Bauer, One-dimensional Au on TiO2. J. Phys.: Condens. Matter 19, 082202 (2007)

    ADS  Google Scholar 

  18. T.O. Menteş, A. Locatelli, L. Aballe, A. Pavlovska, E. Bauer, T. Pabisiak, A. Kiejna, Surface modification of oxides by electron-stimulated desorption for growth-mode control of metal films: experiment and density-functional calculations. Phys. Rev. B 76, 155413 (2007)

    Article  ADS  Google Scholar 

  19. L. Gregoratti, T.O. Mentes, A. Locatelli, M. Kiskinova, Beam-induced effects in soft X-ray photoelectron emission microscopy experiments. J. Electron Spectrosc. Relat. Phenom. 170, 13–18 (2009)

    Article  Google Scholar 

  20. J.I. Flege, W.X. Tang, M.S. Altman, Low-energy electron microscopy, in Characterization of Materials, ed. by E.N. Kaufmann (Wiley, Hoboken, 2012)

    Google Scholar 

  21. M.S. Altman, Trends in low energy electron microscopy. J. Phys.: Condens. Matter 22, 084017 (2010)

    ADS  Google Scholar 

  22. M. Matsumoto, K. Soda, K. Ichikawa, S. Tanaka, Y. Taguchi, K. Jouda, O. Aita, Y. Tezuka, S. Shin, Resonant photoemission study of CeO2. Phys. Rev. B 50, 11340–11346 (1994)

    Article  ADS  Google Scholar 

  23. J. Matharu, G. Cabailh, R. Lindsay, C.L. Pang, D.C. Grinter, T. Skála, G. Thornton, Reduction of thin-film ceria on Pt(111) by supported Pd nanoparticles probed with resonant photoemission. Surf. Sci. 605, 1062–1066 (2011)

    Article  ADS  Google Scholar 

  24. O. Bikondoa, C.L. Pang, R. Ithnin, C.A. Muryn, H. Onishi, G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189–192 (2006)

    Article  ADS  Google Scholar 

  25. P.J. Møller, M. -C. Wu, Surface geometrical structure and incommensurate growth: ultrathin Cu films on TiO2(110). Surf. Sci. 224, 265–276 (1989)

    Article  ADS  Google Scholar 

  26. H. Onishi, Y. Iwasawa, Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surf. Sci. 313, L783–L789 (1994)

    Article  ADS  Google Scholar 

  27. H. Onishi, Y. Iwasawa, Dynamic visualization of a metal-oxide-surface/gas-phase reaction: time-resolved observation by scanning tunneling microscopy at 800 K. Phys. Rev. Lett. 76, 791–794 (1996)

    Article  ADS  Google Scholar 

  28. P.W. Murray, N.G. Condon, G. Thornton, Effect of stoichiometry on the structure of TiO2(110). Phys. Rev. B 51, 10989–10997 (1995)

    Article  ADS  Google Scholar 

  29. C.L. Pang, S.A. Haycock, H. Raza, P.W. Murray, G. Thornton, O. Gülseren, R. James, D.W. Bullett, Added row model of TiO2(110)1 × 2. Phys. Rev. B 58, 1586–1589 (1998)

    Article  ADS  Google Scholar 

  30. R.A. Bennett, P. Stone, N.J. Price, M. Bowker, Two (1 × 2) reconstructions of TiO2(110): surface rearrangement and reactivity studied using elevated temperature scanning tunneling microscopy. Phys. Rev. Lett. 82, 3831–3834 (1999)

    Article  ADS  Google Scholar 

  31. K.F. McCarty, N.C. Bartelt, The 1 × 1/1 × 2 phase transition of the TiO2(110) surface—variation of transition temperature with crystal composition. Surf. Sci. 527, L203–L212 (2003)

    Article  ADS  Google Scholar 

  32. S. Takakusagi, K. Fukui, F. Nariyuki, Y. Iwasawa, STM study on structures of two kinds of wide strands formed on TiO2(110). Surf. Sci. 523, L41–L46 (2003)

    Article  ADS  Google Scholar 

  33. M.N. Colpaert, P. Clauws, L. Flermans, J. Vennik, Thermal and low energy electron bombardment induced oxygen loss of V2O5 single crystals: transition into V6O13. Surf. Sci. 36, 513–525 (1973)

    Article  ADS  Google Scholar 

  34. R.L. Smith, W. Lu, G.S. Rohrer, The observation of oxygen disorder on the V2O5(001) surface using scanning tunneling microscopy. Surf. Sci. 322, 293–300 (1995)

    Article  ADS  Google Scholar 

  35. R.L. Smith, G.S. Rohrer, K.S. Lee, D.-K. Seo, M.-H. Whangbo, A scanning probe microscopy study of the (001) surfaces of V2O5 and V6O13. Surf. Sci. 367, 87–95 (1996)

    Article  ADS  Google Scholar 

  36. T. Oshio, Y. Sakai, S. Ehara, Scanning tunneling microscopy/spectroscopy study of V2O5 surface with oxygen vacancies. J. Vac. Sci. Technol. B 12, 2055–2059 (1994)

    Article  Google Scholar 

  37. R.A. Goschke, K. Vey, M. Maier, U. Walter, E. Goering, M. Klemm, S. Horn, Tip induced changes of atomic scale images of the vanadiumpentoxide surface. Surf. Sci. 348, 305–310 (1996)

    Article  ADS  Google Scholar 

  38. M.V. Ganduglia-Pirovano, J. Sauer, Stability of reduced V2O5(001) surfaces. Phys. Rev. B 70, 045422 (2004)

    Article  ADS  Google Scholar 

  39. K. Hermann, M. Witko, R. Druzinic, R. Tokarz, Oxygen vacancies at oxide surfaces: ab initio density functional theory studies on vanadium pentoxide. Appl. Phys. A Mater. Sci. Process. 72, 429–442 (2001)

    Article  ADS  Google Scholar 

  40. J.M. Sturm, D. Göbke, H. Kuhlenbeck, J. Döbler, U. Reinhardt, M.V. Ganduglia-Priovano, J. Sauer, H.-J. Freund, Partial oxidation of methanol on well-ordered V2O5(001)/Au(111) thin films. Phys. Chem. Chem. Phys. 11, 3290–3299 (2009)

    Article  Google Scholar 

  41. C.M. Yim, C.L. Pang, G. Thornton, Oxygen vacancy origin of the surface band-gap state of TiO2(110). Phys. Rev. Lett. 104, 036806 (2010)

    Article  ADS  Google Scholar 

  42. D. Göbke, Y. Romanyshyn, S. Guimond, J.M. Sturm, H. Kuhlenbeck, J. Döbler, U. Reinhardt, M.V. Ganduglia-Pirovano, J. Sauer, H.-J. Freund, Formaldehyde formation on vanadium oxide surfaces V2O3(0001) and V2O5(001): how does the stable methoxy intermediate form? Angew. Chem. Int. Ed. 48, 3695–3698 (2009)

    Article  Google Scholar 

  43. K. Naya, R. Ishikawa, K. Fukui, Oxygen-vacancy-stabilized positively charged Au nanoparticles on CeO2(111) studied by reflection-absorption infrared spectroscopy. J. Phys. Chem. C 113, 10726–10730 (2009)

    Article  Google Scholar 

  44. J.-F. Jerratsch, X. Shao, N. Nilius, H.-J. Freund, C. Popa, M.V. Ganduglia-Pirovano, A.M. Burow, J. Sauer, Electron localization in defective ceria films: a study with scanning-tunneling microscopy and density-functional theory. Phys. Rev. Lett. 106, 246801 (2011)

    Article  ADS  Google Scholar 

  45. P. Scheiber, M. Fidler, O. Dulub, M. Schmid, U. Diebold, W. Hou, U. Aschauer, A. Selloni, (Sub)Surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 109, 136103 (2012)

    Article  ADS  Google Scholar 

  46. V.E. Henrich, G. Dresselhaus, H.J. Zeiger, Energy-dependent electron-energy-loss spectroscopy: application to the surface and bulk electronic structure of MgO. Phys. Rev. B 22, 4764–4775 (1980)

    Article  ADS  Google Scholar 

  47. V.E. Henrich, R.L. Kurtz, Intrinsic and defect surface states on metal oxides. J. Vac. Sci. Technol. 18, 416–419 (1981)

    Article  ADS  Google Scholar 

  48. P.R. Underhill, T.E. Gallon, The surface defect peak in the electron energy loss spectrum of MgO(100). Solid State Commun. 43, 9–11 (1982)

    Article  ADS  Google Scholar 

  49. A. Kolmakov, J. Stultz, D.W. Goodman, Characterization of surface defects on MgO thin films by ultraviolet photoelectron and metastable impact electron spectroscopies. J. Chem. Phys. 113, 7564–7570 (2000)

    Article  ADS  Google Scholar 

  50. J. Kramer, W. Ernst, C. Tegenkamp, H. Pfnür, Mechanism and kinetics of color center formation on epitaxial thin films of MgO. Surf. Sci. 517, 87–97 (2002)

    Article  ADS  Google Scholar 

  51. J. Kramer, C. Tegenkamp, H. Pfnür, Formation of surface color centers at differently coordinated sites: MgO/Ag(1,1,19). Phys. Rev. B 67, 235401 (2003)

    Article  ADS  Google Scholar 

  52. M. Sterrer, E. Fischbach, T. Risse, H.-J. Freund, Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. Phys. Rev. Lett. 94, 186101 (2005)

    Article  ADS  Google Scholar 

  53. M. Sterrer, M. Heyde, M. Novicki, N. Nilius, T. Risse, H.-P. Rust, G. Pacchioni, H.-J. Freund, Identification of color centers on MgO(001) thin films with scanning tunneling microscopy. J. Phys. Chem. B 110, 46–49 (2006)

    Article  Google Scholar 

  54. M. Sterrer, E. Fischbach, M. Heyde, N. Nilius, H.-P. Rust, T. Risse, H.-J. Freund, Electron paramagnetic resonance and scanning tunneling microscopy investigations on the formation of F+ and F0 color centers on the surface of thin MgO(001) films. J. Phys. Chem. B 110, 8665–8669 (2006)

    Article  Google Scholar 

  55. O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T.E. Madey, U. Diebold, Electron-induced oxygen desorption from the TiO2(011)-2 × 1 surface leads to self-organized vacancies. Science 317, 1052–1056 (2009)

    Article  ADS  Google Scholar 

  56. C.L. Pang, G. Thornton, Manipulation of oxide surfaces. Surf. Sci. 603, 3255–3261 (2009)

    Article  ADS  Google Scholar 

  57. C.L. Pang, O. Bikondoa, D.S. Humphrey, A.C. Papageorgiou, G. Cabailh, R. Ithnin, Q. Chen, C.A. Muryn, H. Onishi, G. Thornton, Tailored TiO2(110) surfaces and their reactivity. Nanotechnology 17, 5397–5405 (2006)

    Article  ADS  Google Scholar 

  58. D.S. Humphrey, C.L. Pang, Q. Chen, G. Thornton, Electron beam and scanning tunnelling microscope tip induced modifications of TiO2(110) surfaces (Unpublished)

    Google Scholar 

  59. F. Vollnhals, T. Woolcot, M.-D. Walz, S. Seiler, H.-P. Steinrück, G. Thornton, H. Marbach, Electron beam-induced writing of nanoscale iron wires on a functional metal oxide. J. Phys. Chem. C 117, 17674–17679 (2013)

    Article  Google Scholar 

  60. V.E. Henrich, G. Dresselhaus, H.J. Zeiger, Observation of two-dimensional phases associated with defect states on the surface of TiO2. Phys. Rev. Lett. 36, 1335–1339 (1976)

    Article  ADS  Google Scholar 

  61. R.L. Kurtz, R. Stockbauer, T.E. Madey, E. Román, J.L. De Segovia, Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf. Sci. 218, 178–200 (1989)

    Article  ADS  Google Scholar 

  62. M.A. Henderson, W.S. Epling, C.H.F. Peden, C.L. Perkins, Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110). J. Phys. Chem. B 107, 534–545 (2003)

    Article  Google Scholar 

  63. S. Wendt, P.T. Sprunger, E. Lira, G.K.H. Madsen, Z. Li, J.Ø. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, A. Lægsgaard, B. Hammer, F. Besenbacher, The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320, 1755–1759 (2008)

    Article  ADS  Google Scholar 

  64. C.M. Yim, C.L. Pang, G. Thornton, Yim, Pang, and Thornton Reply. Phys. Rev. Lett. 104, 259704 (2010)

    Google Scholar 

  65. S. Wendt, R. Bechstein, S. Porsgaard, E. Lira, J.Ø. Hansen, P. Huo, Z. Li, B. Hammer, F. Besenbacher, Comment on “oxygen vacancy origin of the surface band-gap state of TiO2(110)”. Phys. Rev. Lett. 104, 259703 (2010)

    Article  ADS  Google Scholar 

  66. H. Nörenberg, G.A.D. Briggs, Defect structure of nonstoichiometric CeO2(111) surfaces studied by scanning tunneling microscopy. Phys. Rev. Lett. 79, 4222–4225 (1997)

    Article  ADS  Google Scholar 

  67. Y. Namai, K. Fukui, Y. Iwasawa, Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J. Phys. Chem. B 107, 11666–11673 (2003)

    Article  Google Scholar 

  68. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Electron localization determines defect formation on ceria substrates. Science 309, 752–755 (2005)

    Article  ADS  Google Scholar 

  69. S. Gritschneder, M. Reichling, Structural elements of CeO2(111) surfaces. Nanotechnology 18, 044024 (2007)

    Article  ADS  Google Scholar 

  70. S. Torbrügge, M. Reichling, A. Ishiyama, S. Morita, Ó. Custance, Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). Phys. Rev. Lett. 99, 056101 (2007)

    Article  ADS  Google Scholar 

  71. H.H. Pieper, C. Derks, M.H. Zoellner, R. Olbrich, L. Tröger, T. Schroeder, M. Neumann, M. Reichling, Morphology and nanostructure of CeO2(111) surfaces of single crystals and Si(111) supported ceria films. Phys. Chem. Chem. Phys. 14, 15361–15368 (2012)

    Article  Google Scholar 

  72. D.C. Grinter, R. Ithin, C.L. Pang, G. Thornton, Defect structure of ultrathin ceria films on Pt(111): atomic views from scanning tunnelling microscopy. J. Phys. Chem. C 114, 17036–17041 (2010)

    Article  Google Scholar 

  73. D.C. Grinter, Surface studies of metal oxide catalysts and ultrathin films. Ph.D thesis, University College London, 2011

    Google Scholar 

  74. Y. He, O. Dulub, H. Cheng, A. Selloni, U. Diebold, Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009)

    Article  ADS  Google Scholar 

  75. Z. Zhang, J. Lee, J.T. Yates Jr, R. Bechstein, E. Lira, J.Ø. Hansen, S. Wendt, F. Besenbacher, Unraveling the diffusion of bulk Ti interstitials in rutile TiO2(110) by monitoring their reaction with O adatoms. J. Phys. Chem. C 114, 3059–3062 (2010)

    Article  Google Scholar 

  76. Z. Zhang, Q. Ge, S.-C. Li, B.D. Kay, J.M. White, Z. Dohnálek, Imaging intrinsic diffusion of bridge-bonded oxygen vacancies on TiO2(110). Phys. Rev. Lett. 99, 126105 (2007)

    Article  ADS  Google Scholar 

  77. T. Minato, M. Kawai, Y. Kim, Creation of single oxygen vacancy on titanium dioxide surface. J. Mater. Res. 27, 2237–2240 (2012)

    Article  ADS  Google Scholar 

  78. S. Suzuki, K. Fukui, H. Onishi, Y. Iwasawa, Hydrogen adatoms on TiO2(110)-(1 × 1) characterized by scanning tunneling microscopy and electron stimulated desorption. Phys. Rev. Lett. 84, 2156–2159 (2000)

    Article  ADS  Google Scholar 

  79. T. Minato, Y. Sainoo, Y. Kim, H.S. Kato, K. Aika, M. Kawai, J. Zhao, H. Petek, T. Huang, W. He, B. Wang, Z. Wang, Y. Zhao, J. Yang, J.G. Hou, The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface. J. Chem. Phys. 130, 124502 (2009)

    Article  ADS  Google Scholar 

  80. D.P. Acharya, C.V. Ciobanu, N. Camillone III, P. Sutter, Mechanism of electron-induced hydrogen desorption from hydroxylated rutile TiO2(110). J. Phys. Chem. C 114, 21510–21515 (2010)

    Google Scholar 

  81. X. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J. Yang, J.G. Hou, Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1 × 1). J. Chem. Phys. 129, 044703 (2008)

    Article  ADS  Google Scholar 

  82. W.S. Epling, C.H.F. Peden, M.A. Henderson, U. Diebold, Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 412(413), 333–343 (1998)

    Article  ADS  Google Scholar 

  83. Y. Du, Z. Dohnálek, I. Lyubinetsky, Transient mobility of oxygen adatoms upon O2 dissociation on reduced TiO2(110). J. Phys. Chem. C 112, 2649–2653 (2008)

    Article  Google Scholar 

  84. M. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, A. Selloni, U. Diebold, Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341, 988–991 (2013)

    Article  ADS  Google Scholar 

  85. Y. Xia, K. Zhu, T.C. Kaspar, Y. Du, B. Birmingham, K.T. Park, Z. Zhang, Atomic structure of the anatase TiO2(001) surface. J. Phys. Chem. Lett. 4, 2958–2963 (2013)

    Article  Google Scholar 

  86. A. Sasahara, T.C. Doubray, S.A. Chambers, H. Uetsuka, H. Onishi, Topography of anatase TiO2 film synthesized on LaAlO3(001). Nanotechnology 16, S18–S21 (2005)

    Article  ADS  Google Scholar 

  87. Y. Liang, S. Gan, S.A. Chamber, E.I. Altman, Surface structure of anatase TiO2(001): reconstruction, atomic steps, and domains. Phys. Rev. B 63, 235402 (2001)

    Article  ADS  Google Scholar 

  88. Y. Wang, H. Sun, S. Tan, H. Feng, Z. Cheng, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, J.G. Hou, Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nat. Commun. 4, 2214 (2013)

    ADS  Google Scholar 

  89. G.S. Herman, M.R. Sievers, Y. Gao, Structure determination of the two-domain (1 × 4) anatase TiO2(001) surface. Phys. Rev. Lett. 84, 3354–3357 (2000)

    Article  ADS  Google Scholar 

  90. M. Lazzeri, A. Selloni, Stress-driven reconstruction of an oxide surface: the anatase TiO2(001) (1 × 4) surface. Phys. Rev. Lett. 87, 266105 (2001)

    Google Scholar 

  91. O. Byl, J.T. Yates Jr, Anisotropy in the electrical conductivity of rutile TiO2 in the (110) plane. J. Phys. Chem. B 110, 22966–22967 (2006)

    Article  Google Scholar 

  92. A. Berkó, E. Kriván, Nanoscale fabrication on a clean TiO2(110) 1 × 2 surface by scanning tunnel microscopy. J. Vac. Sci. Technol. B 15, 25–31 (1997)

    Article  Google Scholar 

  93. Z. Klusek, A. Busiakiewicz, P.K. Datta, R. Schmidt, W. Kozlowski, P. Kowalczyk, P. Dabrowski, W. Olejniczak, Room and high-temperature scanning tunnelling microscopy and spectroscopy (HT-STM/STS) investigations of surface nanomodifications created on the TiO2(110) surface. Surf. Sci. 601, 1513–1520 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to financial support from the EU COST Action CM1104, the European Research Council Advanced Grant ENERGYSURF, the Royal Society (U.K.), and Alexander von Humboldt Stiftung (Germany) and thank David Grinter for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff Thornton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pang, C.L., Thornton, G. (2015). Photon-, Electron-, and Scanning Tunneling Microscopy-Induced Defects on Oxide Surfaces. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_14

Download citation

Publish with us

Policies and ethics