Skip to main content

Resistive Switching in Oxides

  • Chapter
  • First Online:
Defects at Oxide Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 58))

Abstract

Resistive switching in oxides, the phenomenon whereby the resistance of samples of the matrix can be cycled between states with contrasts of up to several orders of magnitude, has received growing attention over the past decade thanks to the possibility of exploiting this effect in novel memory technologies. Here we summarise the current state of the art in the field, paying particular attention to the underlying mechanisms of switching, which involves the creation of defects in the oxide. We also describe potential technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Lamb, P.C. Rundle, A non-filamentary switching action in thermally grown silicon dioxide films. Br. J. Appl. Phys. 18, 29 (1967)

    Article  ADS  Google Scholar 

  2. C.M. Osburn, D.W. Ormond, Dielectric breakdown in silicon dioxide films on silicon.1. Measurement and interpretation. J. Electrochem. Soc. 119, 591 (1972)

    Article  Google Scholar 

  3. A.D. Pearson, C.E. Miller, Filamentary conduction in semiconducting glass diodes. Appl. Phys. Lett. 14, 280 (1969)

    Article  ADS  Google Scholar 

  4. S.R. Ovshinski, E.J. Evans, D.L. Nelson, H. Fritzsch, Radiation hardness of ovonic devices. IEEE Trans. Nucl. Sci. NS 15, 311 (1968)

    Article  ADS  Google Scholar 

  5. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968)

    Article  ADS  Google Scholar 

  6. A.T. Waterman, On the positive ionization from certain hot salts, together with some observations on the electrical properties of molybdenite at high temperatures. Phil. Mag. 33, 225 (1917)

    Article  Google Scholar 

  7. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, S. Shenoy, Phase change memory technology. J. Vac. Sci. Technol. B 28, 223 (2010)

    Article  Google Scholar 

  8. H.-S.P. Wong, S. Raoux, S.B. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Phase change memory. Proc. IEEE 98, 2201 (2010)

    Article  Google Scholar 

  9. R. Waser, R. Bruchhaus, S. Menzel, in Nanoelectronics and Information Technology, 3rd edn, ed. by R. Waser (Wiley-VCH, Weinheim, 2012)

    Google Scholar 

  10. T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669 (1962)

    Article  ADS  Google Scholar 

  11. C.A. Mead, Operation of tunnel-emission devices. J. Appl. Phys. 32, 646 (1961)

    Article  ADS  Google Scholar 

  12. E.L. Cook, Model for resistive-conductive transition in reversible resistance-switching solids. J. Appl. Phys. 41, 551 (1970)

    Article  ADS  Google Scholar 

  13. H. Pagnia, N. Sotnik, Bistable switching in electroformed metal-insulator-metal devices. Phys. Status Solidi A 108, 11 (1988)

    Article  ADS  Google Scholar 

  14. Y. Watanabe, J.G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, S.J. Wind, Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738 (2001)

    Article  ADS  Google Scholar 

  15. J.R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, N.A. Pertsev, Resistive switching in metal-ferroelectric-metal junctions. Appl. Phys. Lett. 83, 4595 (2003)

    Article  ADS  Google Scholar 

  16. S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Yue, C.W. Chu, L. Chen, A.J. Jacobson, Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85, 317 (2004)

    Article  ADS  Google Scholar 

  17. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655 (2004)

    Article  ADS  Google Scholar 

  18. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073 (2004)

    Article  ADS  Google Scholar 

  19. A. Chen, S. Haddad, Y.C. Wu, T.N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W.D. Cai, N. Tripsas, C. Bill, M. VanBuskirk, M. Taguchi, Non-volatile resistive switching for advanced memory applications, in IEEE International Electron Devices, Technical Digest (2005), p. 765

    Google Scholar 

  20. M. Kund, G. Beitel, C.U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K.D. Ufert, G. Muller, Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. in IEEE International Electron Devices, Technical Digest (2005), p. 773

    Google Scholar 

  21. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  22. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)

    Article  ADS  Google Scholar 

  23. J. Hutchby, M. Garner, Assessment of the Potential and Maturity of Selected Emerging Research Memory Technologies Workshop and ERD/ERM Working Group Meeting (2010). www.itrs.net/Links/2010ITRS/2010Update/ToPost/ERD_ERM_2010FINALReportMemoryAssessment_ITRS.pdf

  24. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  25. O. Kavehei, A. Iqbal, Y.S. Kim, K. Eshraghian, S.F. Al-Sarawi, D. Abbott, The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc. Roy. Soc A 466, 2175 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Dev. 54, 2762 (2007)

    Article  ADS  Google Scholar 

  27. D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid State Lett. 10, G51 (2007)

    Article  Google Scholar 

  28. E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403 (2010)

    Article  ADS  Google Scholar 

  29. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures. Nat. Mater. 10, 625 (2011)

    Article  ADS  Google Scholar 

  30. F. Nardi, S. Balatti, S. Larentis, D. Ielmini, Complementary switching in metal oxides: toward diode-less crossbar RRAMs. IEDM Tech. Dig. 31(1), 1 (2011)

    Google Scholar 

  31. Y. Yang, P. Sheridan, W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012)

    Article  ADS  Google Scholar 

  32. F. Nardi, S. Balatti, S. Larentis, D. Ielmini, Complementary switching in oxide-based bipolar resistive-switching random memory. IEEE Trans. Electron Dev. 60, 70 (2013)

    Article  ADS  Google Scholar 

  33. S. Balatti, S. Larentis, D.C. Gilmer, D. Ielmini, Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 25, 1474 (2013)

    Article  Google Scholar 

  34. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)

    Article  ADS  Google Scholar 

  35. R. Münstermann, J.J. Yang, J.P. Strachan, G. Medeiros-Ribeiro, R. Dittmann, R. Waser, Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching. Phys. Stat. Solidi RRL 4, 16 (2010)

    Article  Google Scholar 

  36. S.H. Jo, K.-H. Kim, W. Lu, Programmable resistance switching in nanoscale two-terminal devices. Nanoletters 9, 496 (2009)

    Article  ADS  Google Scholar 

  37. K. Tsunoda, Y. Fukuzumi, J.R. Jameson, Z. Wang, P.B. Griffin, Y. Nishi, Bipolar resistive switching in polycrystalline TiO2 films. Appl. Phys. Lett. 90, 113501 (2007)

    Google Scholar 

  38. P.J. Zhang, Y. Meng, Z.Y. Liu, X.Y. Pan, X.J. Liang, D.M. Chen, H.W. Zhao, Influences of dislocation distribution on the resistive switching effect of Ag-SiO2 thin films. Acta Phys. Sin. 61, 107703 (2012)

    Google Scholar 

  39. S.M. Wu, T. Tsuruoka, K. Terabe, T. Hasegawa, J.P. Hill, K. Ariga, M. Aono, A polymer-electrolyte-based atomic switch. Adv. Funct. Mater. 21, 93 (2011)

    Article  Google Scholar 

  40. K.-C. Chang, T.-M. Tsai, T.-C. Chang, H.-H. Wu, J.-H. Chen, Y.-E. Syu, G.-W. Chang, T.-J. Chu, G.-R. Liu, Y.-T. Su, M.-C. Chen, J.-H. Pan, J.-Y. Chen, C.-W. Tung, H.-C. Huang, Y.-H. Tai, D.S. Gan, S.M. Sze, Characteristics and mechanisms of silicon-oxide-based resistance random access memory. IEEE Electron Dev. Lett. 34, 399 (2013)

    Article  ADS  Google Scholar 

  41. J. Yao, Z.Z. Sun, L. Zhong, D. Natelson, J.M. Tour, Resistive switches and memories from silicon oxide. Nano Lett. 10, 4105 (2010)

    Article  ADS  Google Scholar 

  42. A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbe, B. Garrido, R. Rizk, A.J. Kenyon, Resistive switching in silicon suboxide films. J. Appl. Phys. 111, 074507 (2012)

    Article  ADS  Google Scholar 

  43. L. Chua, Memristor—missing circuit element. IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  44. T. Prodromakis, C. Toumazou, L. Chua, Two centuries of memristors. Nat. Mater. 11, 478 (2012)

    Article  ADS  Google Scholar 

  45. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765 (2011)

    Article  ADS  Google Scholar 

  46. S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, I. Valov, E. Linn, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  Google Scholar 

  47. S. Thakoor, A. Moopenn, T. Daud, A.P. Thakoor, Solid-state thin-film memistor for electronic neural networks. J. Appl. Phys. 67, 3132 (1990)

    Article  ADS  Google Scholar 

  48. N.K. Patel, L. Martinmoreno, M. Pepper, R. Newbury, J.E.F. Frost, D.A. Ritchie, G.A.C. Jones, J. Janssen, J. Singleton, J. Perenboom, Ballistic transport in one dimension—additional quantization produced by an electric-field. J. Phys.: Condens. Matter 2, 7247 (1990)

    ADS  Google Scholar 

  49. N.K. Patel, J.T. Nicholls, L. Martinmoreno, M. Pepper, J.E.F. Frost, D.A. Ritchie, G.A.C. Jones, Evolution of half plateaux as a function of electric-field in a ballistic quasi-one dimensional constriction. Phys. Rev. B 44, 13549 (1991)

    Article  ADS  Google Scholar 

  50. L. Martinmoreno, J.T. Nicholls, N.K. Patel, M. Pepper, Nonlinear conductance of a saddle-point constriction. J. Phys.: Condens. Matter 4, 1323 (1992)

    ADS  Google Scholar 

  51. Z.M. Liao, C. Hou, Q. Zhao, D.S. Wang, Y.D. Li, D.P. Yu, Resistive switching and metallic-filament formation in Ag2S nanowire transistors. Small 5, 2377 (2009)

    Article  Google Scholar 

  52. S. Tappertzhofen, I. Valov, R. Waser, Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology 23, 145703 (2012)

    Article  ADS  Google Scholar 

  53. X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.-W. Li, Observation of conductance quantization in oxide-based resistive switching memory. Adv. Mater. 24, 3941 (2012)

    Article  Google Scholar 

  54. A. Mehonic, A. Vrajitoarea, S. Cueff, S. Hudziak, H. Howe, C. Labbé, R. Rizk, A.J. Kenyon, Quantum conductance in silicon oxide resistive memory devices. Sci. Rep. 3, 2708 (2013)

    Article  ADS  Google Scholar 

  55. E. Miranda, S. Kano, C. Dou, K. Kakushima, J. Suñé, H. Iwai, Nonlinear conductance quantization effects in CeOx/SiO2-based resistive switching devices. Appl. Phys. Lett. 101, 012910 (2012)

    Article  ADS  Google Scholar 

  56. E. Miranda, J. Su, Mesoscopic approach to the soft breakdown failure mode in ultrathin SiO2 films. Appl. Phys. Lett. 78, 225 (2001)

    Article  ADS  Google Scholar 

  57. L.I. Glazman, A.V. Khaetskii, Nonlinear quantum conductance of a lateral microconstraint in a heterostructure. Europhys. Lett. 9, 263 (1989)

    Article  ADS  Google Scholar 

  58. X. Xu, Theory of nonlinear ballistic transport in quasi-one-dimensional constrictions. Phys. Rev. B 47, 15630 (1993)

    Article  ADS  Google Scholar 

  59. J. Hajto, B. McAuley, A.J. Snell, A.E. Owen, Theory of room temperature quantized resistance effects in metal-a-Si: H-metal thin film structures. J. Non-Cryst. Solids 198, 825 (1996)

    Article  ADS  Google Scholar 

  60. E.-J. Yun, M.F. Becker, R.M. Walser, Room temperature conductance quantization in V||amorphous-V2O5||V thin film structures. Appl. Phys. Lett. 63, 2493 (1993)

    Google Scholar 

  61. T. Tsuruoka, T. Hasegawa, K. Terabe, M. Aono, Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology 23, 435705 (2012)

    Article  ADS  Google Scholar 

  62. K. Terabe, T. Hasegawa, T. Makayama, M. Aono, Quantized conductance atomic switch. Nature 433, 47 (2005)

    Article  ADS  Google Scholar 

  63. J.J.T. Wagenaar, M. Morales-Masis, J.M. van Ruitenbeek, Observing “quantized” conductance steps in silver sulfide: Two parallel resistive switching mechanisms. J. Appl. Phys. 111, 014302 (2012)

    Article  ADS  Google Scholar 

  64. J.R. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, M. Kozicki, N. Derhacobian, Quantized conductance in Ag/GeS2/W conductive-bridge memory cells. IEEE Electron Dev. Lett. 33, 257 (2012)

    Article  ADS  Google Scholar 

  65. S. Long, X.C. Lian, C. Cagli, J. Cortioxà, R. Rurali, E. Miranda, D. Jiménez, L. Perniola, M. Liu, J. Suñé, Quantum-size effects in hafnium-oxide resistive switching. Appl. Phys. Lett. 102, 183505 (2013)

    Article  ADS  Google Scholar 

  66. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011)

    Article  Google Scholar 

  67. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  68. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, M. Oshima, Highly reliable TaO(x) ReRAM and direct evidence of redox reaction mechanism, in IEEE International Electron Devices Meeting, Technical Digest (2008), p. 293

    Google Scholar 

  69. J.J. Yang, M.-X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)

    Article  ADS  Google Scholar 

  70. J. Shin, J. Park, J. Lee, S. Park, S. Kim, W. Lee, I. Kim, D. Lee, H. Hwang, Effect of program/erase speed on switching uniformity in filament-type RRAM. IEEE Electron Dev. Lett. 32, 958 (2011)

    Article  ADS  Google Scholar 

  71. S. Kim, K.P. Biju, M. Jo, S. Jung, J. Park, J. Lee, W. Lee, J. Shin, S. Park, H. Hwang, effect of scaling WOx-based RRAMs on their resistive switching characteristics. IEEE Electron Dev. Lett. 32, 671 (2011)

    Article  ADS  Google Scholar 

  72. T. Ninomiya, K. Katayama, S. Muraoka, R. Yusuhara, T. Mikawa, Z. Wei, conductive filament expansion in TaOx bipolar resistive random access memory during pulse cycling. Jap. J. Appl. Phys. 52, 114201 (2013)

    Article  ADS  Google Scholar 

  73. A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, C. Labbé, R. Rizk, A.J. Kenyon, Electrically tailored resistance switching in silicon oxide. Nanotechnology 23, 455201 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Kenyon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mehonic, A., Kenyon, A.J. (2015). Resistive Switching in Oxides. In: Jupille, J., Thornton, G. (eds) Defects at Oxide Surfaces. Springer Series in Surface Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14367-5_13

Download citation

Publish with us

Policies and ethics