Advertisement

Quantum Spin Chains and Integrable Many-Body Systems of Classical Mechanics

  • A. ZabrodinEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 163)

Abstract

This note is a review of the recently revealed intriguing connection between integrable quantum spin chains and integrable many-body systems of classical mechanics. The essence of this connection lies in the fact that the spectral problem for quantum Hamiltonians of the former models is closely related to a sort of inverse spectral problem for Lax matrices of the latter ones. For simplicity, we focus on the most transparent and familiar case of spin chains on \(N\) sites constructed by means of the GL(2)-invariant \(R\)-matrix. They are related to the classical Ruijsenaars-Schneider system of \(N\) particles, which is known to be an integrable deformation of the Calogero-Moser system. As an explicit example the case \(N=2\) is considered in detail.

Keywords

Spin Chain Inverse Spectral Problem Twisted Boundary Condition Bethe Root Gaudin Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Discussions with A. Alexandrov, A. Gorsky, V. Kazakov, S. Khoroshkin, I. Krichever, S. Leurent, M. Olshanetsky, A. Orlov, T. Takebe, Z. Tsuboi, and A. Zotov are gratefully acknowledged. Some of these results were reported at the International School and Workshop “Nonlinear Mathematical Physics and Natural Hazards” (November 28–December 2 2013, Sofia, Bulgaria). The author thanks the organizers and especially professors B. Aneva and V. Gerdzhikov for the invitation and support. This work was supported in part by RFBR grant 12-01-00525, by joint RFBR grants 12-02-91052-CNRS, 14-01-90405-Ukr and grant NSh-1500.2014.2 for support of leading scientific schools.

References

  1. 1.
    A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi, A. Zabrodin, Classical tau-function for quantum spin chains. JHEP 1309, 064 (2013). arXiv:1112.3310 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    A. Alexandrov, S. Leurent, Z. Tsuboi, A. Zabrodin, The master \(T\)-operator for the Gaudin model and the KP hierarchy. Nucl. Phys. B 883, 173–223 (2014). arXiv:1306.1111
  3. 3.
    A. Zabrodin, The master T-operator for inhomogeneous XXX spin chain and mKP hierarchy. SIGMA 10, 006 (18 pp) (2014). arXiv:1310.6988
  4. 4.
    A. Gorsky, A. Zabrodin, A. Zotov, Spectrum of quantum transfer matrices via classical many-body systems. JHEP 01, 070 (2014). arXiv:1310.6958 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S.N.M. Ruijsenaars, H. Schneider, A new class of integrable systems and its relation to solitons. Ann. Phys. 170, 370–405 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    S.N.M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191–213 (1987)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    F. Calogero, Solution of the one-dimensional \(N\) -body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J. Moser, Three integrable hamiltonian systems connected with isospectrum deformations. Adv. Math. 16, 354–370 (1976)ADSGoogle Scholar
  9. 9.
    M. Olshanetsky, A. Perelomov, Classical integrable finite dimensional systems related to Lie algebras. Phys. Rep. 71, 313–400 (1981)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    M. Gaudin, Diagonalisation d’une classe d’hamiltoniens de spin. J. de Phys. 37(10), 1087–1098 (1976)CrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Givental, B.-S. Kim, Quantum cohomology of flag manifolds and Toda lattices. Commun. Math. Phys. 168, 609–641 (1995). arXiv:hep-th/9312096 CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    E. Mukhin, V. Tarasov, A. Varchenko, Gaudin Hamiltonians generate the Bethe algebra of a tensor power of vector representation of \(gl_N\). St. Petersburg Math. J. 22, 463–472 (2011). arXiv:0904.2131 CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    E. Mukhin, V. Tarasov, A. Varchenko, Bethe algebra of Gaudin model, Calogero-Moser space and Cherednik algebra. Int. Math. Res. Not. 2014(5), 1174–1204 (2014). arXiv:0906.5185 zbMATHMathSciNetGoogle Scholar
  14. 14.
    E. Mukhin, V. Tarasov, A. Varchenko, KZ characteristic variety as the zero set of classical Calogero-Moser Hamiltonians. SIGMA 8, 072 (11 pp) (2012). arXiv:1201.3990
  15. 15.
    E. Mukhin, V. Tarasov, A. Varchenko, Bethe subalgebras of the group algebra of the symmetric group. arXiv:1004.4248
  16. 16.
    E. Mukhin, V. Tarasov, A. Varchenko, Spaces of quasi-exponentials and representations of the Yangian \(Y(gl_N)\). arXiv:1303.1578
  17. 17.
    A. Zabrodin, The master \(T\)-operator for vertex models with trigonometric \(R\)-matrices as classical tau-function. Teor. Mat. Fys. 171, 1, 59–76 (2013) (Theor. Math. Phys. 174, 52–67 (2013)). arXiv:1205.4152
  18. 18.
    A. Zabrodin, Hirota equation and Bethe ansatz in integrable models. Suuri-kagaku J. (in Japanese) (Number 596, 7–12 (2013))Google Scholar
  19. 19.
    E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, in Nonlinear Integrable Systems—Classical and Quantum, ed. by M. Jimbo, T. Miwa (World Scientific, Singapore, 1983), pp. 39–120Google Scholar
  20. 20.
    M. Jimbo, T. Miwa, Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    N. Nekrasov, A. Rosly, S. Shatashvili, Darboux coordinates, Yang-Yang functional, and gauge theory. Nucl. Phys. Proc. Suppl. 216, 69–93 (2011). arXiv:1103.3919
  22. 22.
    D. Gaiotto, P. Koroteev, On three dimensional quiver gauge theories and integrability. JHEP 05, 126 (2013). arXiv:1304.0779 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, Quantum integrable models and discrete classical Hirota equations. Commun. Math. Phys. 188, 267–304 (1997). arXiv:hep-th/9604080 CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. 24.
    A. Zabrodin, Discrete Hirota’s equation in quantum integrable models. Int. J. Mod. Phys. B11, 3125–3158 (1997)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    A. Zabrodin, Hirota equation and Bethe ansatz, Teor. Mat. Fyz. 116, 54–100 (1998) (English translation: Theor. Math. Phys. 116, 782–819 (1998)Google Scholar
  26. 26.
    V. Kazakov, A.S. Sorin, A. Zabrodin, Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics. Nucl. Phys. B 790, 345–413 (2008). arXiv:hep-th/0703147 CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    A. Zabrodin, Bäcklund transformations for difference Hirota equation and supersymmetric Bethe ansatz. Teor. Mat. Fyz. 155, 74–93 (2008) (English translation: Theor. Math. Phys. 155, 567–584 (2008). arXiv:0705.4006
  28. 28.
    H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. fur Phys. 71, 205–226 (1931)Google Scholar
  29. 29.
    L. Faddeev, E. Sklyanin, L. Takhtajan, The quantum inverse problem method. I. Theor. Math. Phys. 40, 688 (1980)zbMATHGoogle Scholar
  30. 30.
    V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1997)Google Scholar
  31. 31.
    L. Faddeev, L. Takhtajan, The spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model. Zap. Nauch. Semin. LOMI 109, 134–178 (1981)zbMATHGoogle Scholar
  32. 32.
    K. Hikami, P. Kulish, M. Wadati, Construction of integrable spin systems with long-range interaction. J. Phys. Soc. Japan 61, 3071–3076 (1992)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn. (Oxford University Press, Oxford, 1995)Google Scholar
  34. 34.
    K. Sawada, T. Kotera, Integrability and a solution for the one-dimensional N-particle system with inversely quadratic pair potential. J. Phys. Soc. Jpn. 39, 1614–1618 (1975)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    S. Wojciechowski, New completely integrable Hamiltonian systems of N particles on the real line. Phys. Lett. A 59, 84–86 (1976)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    P. Kulish, N. Reshetikhin, Diagonalization of \(gl_N\) invariant transfer matrices and quantum N-wave system (Lee model). J. Phys. A 16, L591–L596 (1983)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Biochemical PhysicsMoscowRussia
  2. 2.ITEPMoscowRussia
  3. 3.International Laboratory of Representation Theory and Mathematical PhysicsNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations